Araki, S. and Iriye, K. Osaka J. Math. 19 (1982), 1-55

EQUIVARIANT STABLE HOMOTOPY GROUPS OF SPHERES WITH INVOLUTIONS, I

SHÔRÔ ARAKI*) AND KOUYEMON IRIYE

(Received April 28, 1980)

Introduction. Equivariant stable homotopy groups of spheres with linear involutions were first discussed by Bredon [4, 5] and then by Landweber [10]. But the precise results of computation are not published except a few number of examples even though it seems that they computed these groups to a certain extent. In the present series of works we try to compute these groups systematically.

We use the notations $\pi_{p,q}^{S}$ of Landweber [10] to denote these groups which are denoted by $\pi_{p+q,p}^{S}$ in Bredon [4, 5]. As is well-known there are two types of homomorphisms; the one is the *forgetful homomorphism* $\psi: \pi_{p,q}^{S} \to \pi_{p+q}^{S}$ and the other is the *fixed-point homomorphism* $\phi: \pi_{p,q}^{S} \to \pi_{q}^{S}$. There are also exact sequences involving these homomorphisms, i.e.

$$\cdots \to \pi^{S}_{p+q} \to \pi^{S}_{p,q} \xrightarrow{\chi} \pi^{S}_{p-1,q} \xrightarrow{\psi} \pi^{S}_{p+q-1} \to \cdots$$

and

$$\cdots \to \pi_{q+1}^S \to \lambda_{p,q}^S \to \pi_{p,q}^S \xrightarrow{\phi} \pi_q^S \to \cdots,$$

which are called *forgetful* and *fixed-point exact sequences*. These were certainly two of basic tools by Bredon and Landweber, and we also use these as a part of our basic tools.

Here we present two isomorphisms; the one is

$$\phi: \pi_{p,q}^{s} \approx \pi_{q}^{s} \quad \text{for } p + q < 0,$$

the other is that the fixed-point exact sequence splits in a large part and gives the isomorphism

$$\pi_{p,q}^{s} \approx \lambda_{p,q}^{s} \oplus \pi_{q}^{s}$$
 for $p < q$ or $q < -1$.

The first isomorphism reduces the computation of $\pi_{p,q}^{s}$ for p+q<0 to that of ordinary stable stems. The second isomorphism reduces the computation of

^{*)} Supported by Grant-in-Aid for Scientific Research, No. 454017.