THE GROUP OF UNITS OF THE INTEGRAL GROUP RING OF A METACYCLIC GROUP

Katsusuke SEKIGUCHI

(Received February 6, 1980)

We denote by $U(\Lambda)$ the group of units of a ring Λ . Let G be a finite group and let $\mathbb{Z}G$ be its integral group ring. Define $V(\mathbb{Z}G) = \{u \in U(\mathbb{Z}G) \mid \mathcal{E}(u) = 1\}$ where \mathcal{E} denotes the augmentation map of $\mathbb{Z}G$. In this paper we will study the following

Problem. Is there a torsion-free normal subgroup F of $V(\mathbf{Z}G)$ such that $V(\mathbf{Z}G) = F \cdot G$?

Denote by S_n the symmetric group on n symbols, by D_n the dihedral group of order 2n and by C_n the cyclic group of order n. The problem has been solved affirmatively in each of the following cases:

- (1) G an abelian group (Higman [4]),
- (2) $G=S_3$ (Dennis [2]),
- (3) $G=D_n$, n odd (Miyata [5]) or
- (4) G a metabelian group such that the exponent of G/G' is 1, 2, 3, 4 or 6 where G' is the commutator subgroup of G([7]).

The purpose of this paper is to solve the problem for a class of metacyclic groups. Our main result is the following

Theorem. Let $G=C_n \cdot C_q$ be the semidirect product of C_n by C_q such that (n,q)=1, q odd, and C_q acts faithfully on each Sylow subgroup of C_n . Then there exists a torsion-free normal subgroup F of V(ZG) such that $V(ZG)=F \cdot G$.

1. Lemmas

We begin with

Lemma 1.1. Let r, k, n be non negative integers and h be a positive integer. Then

(1)
$$\sum_{r=0}^{n} (r+1) \cdots (r+k) = (n+1) \cdots (n+k+1)/(k+1)$$
, and

(2)
$$\sum_{r=0}^{n} r^{h}(r+1) \cdots (r+k) = \frac{n(n+1) \cdots (n+k+1) f(n, k, h)}{(k+2) \cdots (k+h+1)}$$
,