Nobusawa, N. Osaka J. Math. 18 (1981), 749-754

A REMARK ON CONJUGACY CLASSES IN SIMPLE GROUPS

NOBUO NOBUSAWA

(Received January 23, 1980)

Let A be a union of some conjugacy classes in a group. We define a binary operation on A by $a \circ b = b^{-1}ab$. It satisfies that (1) $a \circ a = a$, (2) $(a \circ b) \circ c =$ $(a \circ c) \circ (b \circ c)$ and (3) a mapping $\sigma_a: x \to x \circ a$ is a permutation on A. Generally we call a binary system which satisfies the above three conditions a pseudosymmetric set. It is called a symmetric set if (4) σ_a has the order 2 is also satisfied. The set of all nilpotent elements in a Lie algebra is another example of a pseudosymmetric set. where $\sigma_a = \exp(ad a)$. The purpose of this note is to generalize the main result on the simplicity of a symmetric set given in [2] to the case of a pseudosymmetric set. As applications, three examples of conjugacy classes in simple groups A_n , SL(V) and Sp(V) will be discussed, from which we could derive a new proof of the simplicity of the corresponding groups A_n , PSL(V)and PSp(V).

Generally, let A be a pseudosymmetric set and define $G=G(A)=\langle \sigma_a | a \in A \rangle$, a group generated by σ_a . The above three conditions imply that G is a group of automorphisms of A. Note that if ρ is an automorphism of A, then $\sigma_a{}^{\rho}=\rho^{-1}\sigma_a\rho$. $\{\sigma_a|a\in A\}$ is a union of conjugacy classes in G and hence is a pseudosymmetric set, and the mapping $\sigma: a \to \sigma_a$ is a homomorphism of A to the set. When σ is a monomorphism, we say that A is effective. When $A=a^G$ for an element a, we say that A is transitive. Let G' be the commutator subgroup of G. When A is transitive, $G'=\langle \sigma_a^{-1}\sigma_b | a, b\in A \rangle$, since $b=a^{\rho}$ with some element ρ in G and $\sigma_a^{-1}\sigma_b=\sigma_a^{-1}\rho^{-1}\sigma_a\rho\in G'$ and conversely $\sigma_a^{-1}\sigma_b^{-1}\sigma_a\sigma_b=\sigma_a^{-1}\sigma_c$ with $c=a^{\sigma_b}$. So, in this case, $G=\langle G', \sigma_a \rangle$ for any a. Also note that if A is a union of conjugacy classes in a group K and if A generates K, then $G\cong K/Z(K)$, where Z(K) is the center of K.

Let A and B be pseudosymmetric sets and suppose that there exists a homomorphism f of A onto B. The inverse image $f^{-1}(b)$ for an element b in B is called a coset of f. Let $\{C_i\}$ be the set of all cosets of f. Then $\{C_i\}$ is a system of blocks of imprimitivity of the permutation group G, and if σ and ρ belong to the same coset, then $C_i^{\rho} = C_i^{\sigma}$ for every i. When |B| > 1 and f is not a monomorphism, we say that f is proper. A pseudosymmetric set A with |A| > 2 is called simple if it has no proper homomorphism. Note that if A is simple, then it is transitive. For, consider the canonical homomorphism $a \rightarrow a^G$