EQUIVARIANT DESUSPENSION OF G-MAPS

KATSUHIRO KOMIYA AND MASAHARU MORIMOTO

(Received January 19, 1980)

1. Introduction

In this paper we will give sufficient conditions for a G-map to desuspend equivariantly. Throughout this paper G always denotes a compact Lie group.

For a G-space M let M^{Σ} be the unreduced suspension defined to be the quotient space of $M \times [0,1]$ in which $M \times \{0\}$ is collapsed to one point (called the south pole) and $M \times \{1\}$ is collapsed to another point (called the north pole). Giving the trivial G-action on [0,1], a G-action on M^{Σ} is naturally induced. The unreduced suspension $f^{\Sigma}: M^{\Sigma} \to N^{\Sigma}$ of a G-map $f: M \to N$ is also a G-map.

If H is a closed subgroup of G, then (H) and N(H) denote the conjugacy class and the normalizer of H in G, respectively. For a point x of a G-space M, G_x denotes the isotropy subgroup of G at x. The conjugacy class of an isotropy subgroup is called an isotropy type on M. Define $\mathcal{G}(M)$ to be the set of all isotropy types on M. Define

$$M^H = \{x \in M | H \subset G_r\}$$
.

If M is a smooth G-manifold, then M^H is an N(H)-invariant submanifold of M, which possibly has various dimensional components. Define dim M^H to be the maximum of those dimensions.

The main result of this paper is:

Theorem. Let M be a compact, smooth G-manifold, and N a G-space. Let $f: M^{\Sigma} \to N^{\Sigma}$ be a G-map such that $f(z_{\varepsilon}) = z'_{\varepsilon}$ for $\varepsilon = 0,1$, where z_0 and z_1 are the south pole and the north pole of M^{Σ} respectively, and z'_0 and z'_1 are those of N^{Σ} . Suppose that for all $(H) \in \mathcal{G}(M)$ there are non-negative integers n_H satisfying the following conditions:

- (i) dim M^H -dim $N(H)/H \le n_H + 1$,
- (ii) N^H is n_H -connected, and
- (iii) if $n_H = 0$, $\pi_1(N^H)$ is abelian.

Then f is G-homotopic to h^{Σ} relative to $\{z_0, z_1\}$ for some G-map $h: M \rightarrow N$.

S(V) denotes the unit sphere in an orthogonal representation V of G. R denotes the trivial one-dimensional representation of G. Then $S(V \oplus R)$ may