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0. Introduction

Consider an algebraic differential equation of the first order F(y,y’)=0 over
an algebraically closed ordinary differential field & of characteristic 0, where F
is an irreducible polynomial over k. Recently Matsuda [3] presented a dif-
ferential-algebraic definition for F=0 to be free from parametric singularities
and gave a purely algebraic proof of the following theorem essentially due to
Fuchs [2] and Poincaré [8]: Suppose that F=0 is free from parametric sin-
gularities. Then it is reduced to a Riccati equation or a defining equation of
elliptic function by a birational transformation over k if the genus of F=0 is 0
or 1 respectively. The author [4] proved that under the above assumption it
is reduced to an equation of Clairaut type by a birational transformation over k
if the genus is greater than 1. This theorem is essentially due to Poincaré [8],
Painlevé [5] and Picard [6].

Here a differential-algebraic formulation and its proof of the following
theorem which is essentially due to Painlevé [5], [6] will be given: The general
solution 7 of F=0 depends algebraically upon an arbitrary constant over some
differential extension field of % if and only if there exists an algebraic differential
equation of the first order G=0 over & such that it is free from parametric sin-
gularities and the general solution of G=0 is a rational function of » and »’
over k. Here, we assume that & contains non-constants.

Let k& be an algebraically closed ordinary differential field of characteristic
0, and Q be a universal differential extension field of k. Suppose that K is
a differential subfield of Q and it is an algebraic function field of one variable
over k. Let P be a prime divisor of K and K, be the completion of K with
respect to P. Then K is a differential extension field of K and the differentia-
tion is continuous in the metric of Kp (cf. [1, p. 114]). Let v, and ¢, denote
respectively the normalized valuation belonging to P and a prime element in
P. The following definition is due to Matsuda [3]: K is said to be free from
parametric singularities over k if we have vp(t?)=0 for each prime divisor P of



