Kakutani, S. Osaka J. Math. 17 (1980), 513-524

ON THE GROUPS $J_{Z_{m,q}}(*)$

Shin-ichiro KAKUTANI

(Received August 10, 1979)

1. Introduction

Let G be a compact topological group. If V is an orthogonal representation space of G, we denote by S(V) its unit sphere with respect to some Ginvariant inner product. Two orthogonal representation spaces V and W of G are called *J-equivalent* if there exists an orthogonal representation space U such that $S(V \oplus U)$ and $S(W \oplus U)$ are G-homotopy equivalent. Let RO(G)denote the real representation ring of G, and let $T_G(*) \subset RO(G)$ denote an additive subgroup consisting of all elements V - W such that V and W are *J*-equivalent.

In [6] and [7], Kawakubo considered the quotient group $J_G(*) = RO(G)/T_G(*)$ and the natural epimorphism $J_G: RO(G) \rightarrow J_G(*)$, and determined the structure of $J_G(*)$ for compact abelian topological groups G.

The purpose of this paper is to determine $J_G(*)$ in case G is the metacyclic group

$$Z_{m,q} = \{a, b | a^m = b^q = e, bab^{-1} = a^r\},$$

where *m* is a positive odd integer, *q* is an odd prime integer, (r-1, m)=1 and *r* is a primitive *q*-th root on 1 mod *m*. Our main results are Theorem 7.3 and Corollary 7.4.

The author wishes to express his hearty thanks to Professor K. Kawakubo for many invaluable advices.

2. The metacyclic group $Z_{m,q}$

In this section we recall some well-known results about the metacyclic group $Z_{m,q}$. The metacyclic group $Z_{m,q}$ is a non-abelian group of order mq and every element of $Z_{m,q}$ is written in the form

$$g = a^i b^j$$
, $0 \leq i \leq m-1$, $0 \leq j \leq q-1$.

Let $m = p_1^{r(1)} p_2^{r(2)} \cdots p_t^{r(t)}$ be a prime decomposition of m. We can check easily from the definition of $Z_{m,q}$ the following: