ON THE HOMOTOPY GROUP $\pi_{2n+9}(U(n))$ FOR $n \ge 6$

HIDEAKI ÖSHIMA

(Received April 16, 1979)

The homotopy groups $\pi_{2n+i}(U(n))$ of the unitary group U(n) for $0 \le i \le 8$, i=10 and 12 were determined by Borel and Hirzebruch [2], Bott [3], Kervaire [7], Toda [22, 23], Matsunaga [8–12], Mimura and Toda [13], Mosher [14, 15], and Imanishi [6]. For $n \ge 5$ and i=9, 11 or 13 the odd components were determined by [12] and [6], but the 2-component had not been completely determined. Indeed Mosher [15] has not determined some group extensions which appear in case of i=9 only if n=2, 4 or 6 mod (8) and $n\ge 6$. In this note we shall determine these group extensions for i=9. $\pi_{2n+9}(U(n))$ for $n\le 5$ was determined by [6], [13], [15] and [23]. Therefore we shall complete the computation of $\pi_{2n+9}(U(n))$. While the group $\pi_{2n+9}(U(n))$ has been computed by Vastersavendts [24] for $n\equiv 0 \mod (4)$, 6 mod (8) or 2 mod (16), her results contradict Mosher's [15] and ours for $n\equiv 0 \mod (16)$ and $n\equiv 6 \mod (8)$ respectively.

We shall prove

Theorem. The 2-component of $\pi_{2n+9}(U(n))$ for $n \equiv 2, 4$ or $6 \mod (8)$ and $n \ge 6$ is given by the following table:

<i>n</i> mod ()	$\pi_{2n+9}(U(n))$
2(16)	$Z_2 \oplus Z_4 \oplus Z_2$
10(32)	$Z_2 \oplus Z_4 \oplus Z_4$
26(64)	$Z_2 \oplus Z_4 \oplus Z_8$
58(64)	$Z_2 \oplus Z_4 \oplus Z_{16}$
4(8)	$Z_2 \oplus Z_2 \oplus Z_8$
6(8)	$Z_2 \oplus Z_4$

where $Z_m = Z/mZ$ is the cyclic group of order m.

We shall use the notations and terminologies defined in [20] or the book of Toda [23] without any reference.

Supported by Grant-in-Aid for Scienitfic Research, No. 454017