Kobayashi, K. Osaka J. Math. 17 (1980), 485-494

ON THE IRREDUCIBILITY OF 2-FOLD BRANCHED COVERS OF S³

KAZUAKI KOBAYASHI

(Received August 2, 1978)

0. Introduction. Montesinos [8] and Hilden [2] showed that every closed, orientable 3-manifold is a 3-fold irregular covering space of S^3 branched over a link ℓ . And Waldhausen [10] showed that two homotopy equivalent closed orientable, sufficiently large 3-manifolds are homeomorphic. So we study that what kind of 3-manifold is irreducible i.e. an embedded 2-sphere in the 3-manifold bounds a 3-ball. Using the result of Montesinos [8] and the surgery technique, we obtain the following.

Theorem. Let $l = k_1 \cup \cdots \cup k_{\mu}$ be a link in S^3 such that every component k_i (i=1, 2, ..., μ) of l is a trivial knot. If M(l) is a 2-fold covering space of S^3 branched over l and if $\pi_2(M(l))=0$, M(l) is irreducible.

And in section 2 we study a method of determining whether $\pi_2(M(l))=0$ or not for a given link l whose components are all trivial knots.

1. Proof of Theorem

Lemma 1. Let k be a trivial knot in S^3 . If B^3 is a 3-ball in S^3 such that the intersection \mathcal{D}^1 of B^3 with k is homeomorphic to the 1-ball, the pair (B^3, \mathcal{D}^1) is a standard pair (i.e. there is an orientation preserving homeomorphism $h:(B^3, \mathcal{D}_1) \rightarrow (D^1 \times D^2, D^1 \times \{0\})$ where D^n is the standard n-ball.

Proof. Since k is a trivial knot, there is an embedded 2-ball B^2 in S^3 with $\partial B^2 = k$. We may assume that B^2 meets ∂B^3 transversally and so $B^2 \cap \partial B^3 = \{a \text{ simple arc}\} \cup \{simple \text{ closed curves}\}$. Let α be a simple closed curve in $B^2 \cap \partial B^3$ which is innermost in B^2 with respect to $B^2 \cap \partial B^3$. α splits ∂B^3 into two 2-balls. Let B_{α} be one of the two 2-balls such that B_{α} does not contain the simple arc in $B^2 \cap \partial B^3$. Since α is innermost in B^2 with respect to $B^2 \cap \partial B^3$, there is a 2-ball B'_{α} in B^2 with $B'_{\alpha} \cap B^3 = \partial B'_{\alpha} = \alpha$. Then $B_{\alpha} \cup_{\partial} B'_{\alpha} = S^2$ and so $B_{\alpha} \cup_{\partial} B'_{\alpha}$ bounds a 3-ball. Hence there is an ambient isotopy $\{\phi_i\}: S^3 \to S^3$ $(0 \le t \le 1)$ keeping α fixed such that $\phi_0 = id.$, $\phi_1(B'_{\alpha}) = B_{\alpha}$. We may assume that the support of $\{\phi_i\}$ is a small neighborhood of "one of" 3-balls bounded