Muto, H. and Urakawa, H. Osaka J. Math. 17 (1980), 471-484

ON THE LEAST POSITIVE EIGENVALUE OF LAPLACIAN FOR COMPACT HOMOGENEOUS SPACES

HIDEO MUTO AND HAJIME URAKAWA

(Received May 21, 1979)

Introduction and statement of results

Let M be an *n*-dimensional compact smooth manifold. Two Riemannian metrics g_1 and g_2 on M are called to be *homothetically equivalent* if there exists a diffeomorphism Φ of M onto itself such that Φ^*g_1 coincides g_2 with a constant multiple.

Let M=G/K be a compact homogeneous space, where G is a compact Lie group and K is a closed subgroup of G. A Riemannian metric g on M is called be G-invariant if all the translations τ_x by elements x in G on M are isometric with respect to the metric g (cf. [3]). Let us consider the elementary, but nontrivial problem: How many G-invariant mutually homothetically inequivalent Riemannian metrics are there on M=G/K?

If the linear isotropy action of K on the tangent space $T_o(M)$ of M at the origin $o = \{K\} \in M$ (cf. [3]) is irreducible over R, then there exists a unique (up to homothetic equivalence) G-invariant Riemannian metric on M (cf. [9]). So the above problem is reduced to the case that the linear isotropy action of K is reducible over R, that is, the tangent space $T_o(M)$ is decomposed into two proper subspaces invariant by the linear isotropy action of K. In this case, many people would have the following conjecture: If a compact homogeneous space M=G/K (with some additional assumptions) has the reducible isotropy action of K over R, then it would have uncountably many mutually homothetically inequivalent G-invariant metrics.

One of the purposes of this paper is to show that the above conjecture is affirmative.

Now we assume that a compact homogeneous space G/K has the condition (C): The linear isotropy action of K on the tangent apace $T_o(M)$ of M at the origin o is reducible and includes the identity representation of K on $T_o(M)$. Let \mathfrak{g} be the Lie algebra of all left invariant vector fields on G and let \mathfrak{k} be the subalgebra of \mathfrak{g} corresponding to the subgroup K. Since G is compact, there exists an $\mathrm{Ad}(G)$ -invariant inner product B on \mathfrak{g} . Let \mathfrak{m} be the orthocomplement of \mathfrak{k} in \mathfrak{g} with respect to B. Then we have the decomposition