PRIMITIVE SYMMETRIC SETS IN FINITE ORTHOGONAL GEOMETRY

Nobuo NOBUSAWA

(Received January 22, 1979)

Let V be a vector space over a finite field k of characteristic $\neq 2$, and $(x$, y) a non-degenerate symmetric bilinear form on V. For an element a in V with $(a, a) \neq 0$, we denote by σ_{a} the reflection in the hyperplane orthogonal to a. A subspace generated by a, b, \cdots, c is denoted by $\langle a, b, \cdots, c\rangle$. Especially $\langle a\rangle$ is denoted by \bar{a}. Let $A=\{\bar{a} \mid(a, a)=1\}$. We can define a symmetric structure on A by $\bar{a} \circ \bar{b}=\bar{c}$, where $c=a^{\sigma}{ }^{\sigma}$. The main object of this note is to show that if $\operatorname{dim} V>4$ or if $\operatorname{dim} V=4$ and $k \neq F_{3}$ (the field of three elements), then A is a primitive symmetric set. For the primitive symmetric set, see [3]. Group-theoretically this implies that the centralizer of the involution σ_{a} in the orthogonal group is a maximal subgroup.

Let $G(V)$ be the orthogonal group, and Ω its commutator subgroup. Let $H(A)$ be the group generated by $\sigma_{a} \sigma_{b}$ where $(a, a)=(b, b)=1$. Note that the restriction of $H(A)$ onto A is called the group of displacements and is denoted by $H(A)$ in the previous papers. We denote the latter by $\bar{H}(A)$.

Lemma 1. Suppose that dim $V \geq 4$. Let a and b be elements in V such that $(a, a)=(b, b) \neq 0$ and that $\langle a, b\rangle$ is a non-singular subspace of dim 2 . If x is an element in V such that $(x, x)=(a, a)$ and $\operatorname{dim}\langle a, x\rangle=2$, then there exist τ_{1} and τ_{2} in $G(V)$ and c in V such that $a^{\tau_{1}}=a, x^{\tau_{1}}=c, a^{\tau_{2}}=b$ and $x^{\tau_{2}}=c$.

Proof. First, we note that if y and z are elements in V such that $(y, y)=$ $(z, z) \neq 0$ and that $\operatorname{dim}\langle y, z\rangle=2$, then $\langle y, z\rangle$ is non-singular if and only if $(y, z) \neq \pm(y, y)$. For, let $z=\alpha y+t$ with α in k and t in V such that $(y, t)=0$ and $t \neq 0$. Then $\langle y, z\rangle$ is singular if and only if $(t, t)=0$, if and only if $\alpha=$ ± 1, if and only if $(y, z)= \pm(y, y)$. Now, put $c=\beta(a+b)+u$ with β in k and u in V such that $u \in\langle a, b\rangle^{\perp}$. We let $\beta=(a, x)((a, a)+(a, b))^{-1}$. This is possible since $(a, a) \neq-(a, b)$ as noted first. Then $(a, c)=(b, c)=(a, x)$. Next, select u suitably in $\langle a, b\rangle^{\perp}$ so that $(c, c)=(a, a)$. This is possible since $\langle a, b\rangle^{\perp}$ is universal, i.e., $k=\left\{(u, u) \mid u \in\langle a, b\rangle^{\perp}\right\}$. Note $\operatorname{dim} V \geq 4$ and hence $\operatorname{dim}\langle a, b\rangle^{\perp}$ ≥ 2. Thus, we have $\langle a, x\rangle \cong\langle a, c\rangle \cong\langle b, c\rangle$, the first elements corresponding to the first, and the second to the second by the isomorphisms. Then by Witt's theorem, we have the consequence stated in Lemma 1.

