PRIMITIVE SYMMETRIC SETS IN FINITE ORTHOGONAL GEOMETRY

Nobuo NOBUSAWA

(Received January 22, 1979)

Let V be a vector space over a finite field k of characteristic ± 2 , and (x, y) a non-degenerate symmetric bilinear form on V. For an element a in V with $(a, a) \pm 0$, we denote by σ_a the reflection in the hyperplane orthogonal to a. A subspace generated by a, b, \cdots , c is denoted by $\langle a, b, \cdots, c \rangle$. Especially $\langle a \rangle$ is denoted by \bar{a} . Let $A = \{\bar{a} \mid (a, a) = 1\}$. We can define a symmetric structure on A by $\bar{a} \circ \bar{b} = \bar{c}$, where $c = a^{\sigma_b}$. The main object of this note is to show that if dim V > 4 or if dim V = 4 and $k \pm F_3$ (the field of three elements), then A is a primitive symmetric set. For the primitive symmetric set, see [3]. Group-theoretically this implies that the centralizer of the involution σ_a in the orthogonal group is a maximal subgroup.

Let G(V) be the orthogonal group, and Ω its commutator subgroup. Let H(A) be the group generated by $\sigma_a \sigma_b$ where (a, a) = (b, b) = 1. Note that the restriction of H(A) onto A is called the group of displacements and is denoted by H(A) in the previous papers. We denote the latter by $\overline{H}(A)$.

Lemma 1. Suppose that dim $V \ge 4$. Let a and b be elements in V such that $(a, a) = (b, b) \pm 0$ and that (a, b) is a non-singular subspace of dim 2. If x is an element in V such that (x, x) = (a, a) and dim (a, x) = 2, then there exist τ_1 and τ_2 in G(V) and c in V such that $a^{\tau_1} = a$, $x^{\tau_1} = c$, $a^{\tau_2} = b$ and $x^{\tau_2} = c$.

Proof. First, we note that if y and z are elements in V such that $(y, y) = (z, z) \pm 0$ and that $\dim \langle y, z \rangle = 2$, then $\langle y, z \rangle$ is non-singular if and only if $(y, z) \pm \pm (y, y)$. For, let $z = \alpha y + t$ with α in k and t in V such that (y, t) = 0 and $t \pm 0$. Then $\langle y, z \rangle$ is singular if and only if (t, t) = 0, if and only if $\alpha = \pm 1$, if and only if $(y, z) = \pm (y, y)$. Now, put $c = \beta(a + b) + u$ with β in k and u in V such that $u \in \langle a, b \rangle^{\perp}$. We let $\beta = (a, x)((a, a) + (a, b))^{-1}$. This is possible since $(a, a) \pm -(a, b)$ as noted first. Then (a, c) = (b, c) = (a, x). Next, select u suitably in $\langle a, b \rangle^{\perp}$ so that (c, c) = (a, a). This is possible since $\langle a, b \rangle^{\perp}$ is universal, i.e., $k = \{(u, u) | u \in \langle a, b \rangle^{\perp}\}$. Note dim $V \geq 4$ and hence dim $\langle a, b \rangle^{\perp} \geq 2$. Thus, we have $\langle a, x \rangle \cong \langle a, c \rangle \cong \langle b, c \rangle$, the first elements corresponding to the first, and the second to the second by the isomorphisms. Then by Witt's theorem, we have the consequence stated in Lemma 1.