Marubayashi, H. Osaka J. Math. 17 (1980), 391-406

COMPLETIONS OF HEREDITARY NOETHERIAN PRIME RINGS

HIDETOSHI MARUBAYASHI

(Received June 26, 1979)

Let R be a hereditary noetherian prime ring with quotient ring Q and let $A=M_1\cap\cdots\cap M_p$ be a maximal invertible ideal of R, where M_1, \dots, M_p is a cycle (cf. [2] for the definition of cycles). The main purpose of this paper is to prove the following theorem:

Theorem 1.1. (1) The completion \hat{R} of R with respect to A is a bounded hereditary noetherian prime ring with quotient ring $Q \otimes \hat{R}$. The Jacobson radical \hat{A} of \hat{R} is $A\hat{R} = \hat{R}A$ and \hat{A}^p is a principal right and left ideal of \hat{R} .

(2) \hat{R} has the following decomposition;

$$\hat{R} = (e_1 \hat{R} \oplus \cdots \oplus e_1 \hat{R}) \oplus (e_2 \hat{R} \oplus \cdots \oplus e_2 \hat{R}) \oplus \cdots \oplus (e_p \hat{R} \oplus \cdots \oplus e_p \hat{R})$$

such that each $e_i \hat{R}$ is a uniform right ideal of \hat{R} , e_i is an idempotent in \hat{R} and $e_i \hat{R}/e_i \hat{A}$ is a simple right R-module which is annihilated by M_i , where k_i is the Goldie dimension of R/M_i .

In case R is a Dedekind prime ring and A is a maximal ideal of R, Gwynne and Robson proved that \hat{R} is also a Dedekind prime ring [5] (in fact, it is a principal ideal ring). We can not use their techniques to prove the theorem. The theorem is proved by using properties of cotosion R-modules.

Applying the theorem to module theory, we prove, in section 2, the following theorems:

Theorem 2.1. Any module over \hat{R} has a basic submodule.

Theorem 2.2. Under the same notations as in Theorem 1.1, any indecomposable right \hat{R} -module is isomorphic to one of the following \hat{R} -modules;

 $e_i\hat{R}/e_i\hat{A}^n$ $(n=1,2,\cdots)$, $e_i\hat{R}$, $e_i(Q\otimes\hat{R})$, $E(e_i\hat{R}/e_i\hat{A})$ $(i=1,\cdots,p)$

where $E(e_i\hat{R}/e_i\hat{A})$ is the R-injective hull of $e_i\hat{R}/e_i\hat{A}$.