Marubayashi, H. Osaka J. Math. 17 (1980), 377-390

MODULES OVER DEDEKIND PRIME RINGS. V

HIDETOSHI MARUBAYASHI

(Received December 1, 1977)

Let R be a Dedekind prime ring, let F be a non-trivial right additive topology on R and let F_i be the left additive topology corresponding to F (cf. [8]). For any positive integer n, let F^n be the set of all right ideals containing a finite intersection of elements in F, each of which has at most n as the length of composition series of its factor module. An exact sequence $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ of right R-modules is EF^n -pure if the induced sequence $0 \rightarrow Ext(Q_{F^n}/R, L) \rightarrow Ext$ $(Q_{F^n}/R, M) \rightarrow Ext(Q_{F^n}/R, N) \rightarrow 0$ is splitting exact, where $Q_{F^n} = \lim_{\to \to} I^{-1}(I$ ranges over all elements in F^n). If R is the ring of integers, p is a prime number and F is the topology of all powers of p, then EF^n -purity is equivalent to p^n -purity in the sense of [12].

The aim of this paper is to investigate the structure of EF^{n} -pure injective modules. In Section 1, a notion of maximal F^n -torsion modules will be introduced. It is shown, in Theorem 1.10, that there is a duality between all maximal F^n -torsion modules and all direct summands of direct products of copies of $\hat{R}_{F_i^n}$ by using the results in [9], where $\hat{R}_{F_i^n} = \lim R/J$ $(J \in F_i^n)$. In Section 2, we shall study the category $C(F^n)$ of F^n -reduced, EF^n -pure injective modules. After discussing some properties of EF^n -puries and F^n -purities we shall give, in Theorem 2.9, characterizations of projective objects in the category $C(F^n)$. In particular, it is established that a module is a direct summand of a direct product of copies of $\hat{R}_{F_{i}^{n}}$ if and only if it is a projective object in $C(F^{n})$. F is bounded if each element of F contains a non-zero ideal of R. If F is bounded, then $\hat{R}_{F_{i}} = \Pi R/P^{n}$, where P ranges over all prime ideals contained in F. So our results may essentially be interesting in case F contains completely faithful right ideals of R in the sense of [3].

1. The Harrison duality

Throughout this paper, R will be a Dedekind prime ring with the twosided quotient ring Q and $K=Q/R\neq 0$. By a module we shall understand a unitary right R-module. In place of \bigotimes_R , Hom_R , Ext_R and Tor^R , we shall just write \bigotimes , Hom, Ext and Tor, respectively. Since R is hereditary, $\operatorname{Tor}_n=0$ $=\operatorname{Ext}^n$ for all n>1 and so we shall use Ext for Ext^1 and Tor for Tor_1 . Let I be