GENERICALLY RATIONAL POLYNOMIALS

Dedicated to Professor Y. Nakai on his sixtieth birthday

MASAYOSHI MIYANISHI*) AND TOHRU SUGIE

(Received February 13, 1979)

Introduction. Let k be an algebraically closed field of characteristic zero. Let k[x, y] be a polynomial ring of two variables and let $A_k^2 = \operatorname{Spec}(k[x, y])$. Embed A_k^2 into the projective plane P_k^2 as the complement of a line l_{∞} . Let $f \in k[x, y]$ be an irreducible polynomial, let F_{α} be the curve on A_k^2 defined by $f=\alpha$ for every $\alpha \in k$ and let C_{α} be the closure of F_{α} in P_{k}^{2} . Then the set $\Lambda(f) := \{C_{\alpha}; \alpha \in k \cup (\infty)\}$ is a linear pencil on P_k^2 defined by f, where $C_{\infty} = dl_{\infty}$, d being the degree of f. The set $\Lambda_0(f) := \{F_a; \alpha \in k\}$ is called the linear pencil on A_k^2 defined by f. The polynomial f is called generically rational when the general members of $\Lambda(f)$ (or $\Lambda_0(f)$) are irreducible rational curves. Since the algebraic function field k(x, y) of one variable over the subfield k(f) then has genus 0, Tsen's theorem says that f is generically rational if and only if f is a field generator in the sense of Russell [9, 10], i.e., there is an element $g \in k(x, y)$ such that k(x, y) = k(f, g). If f is a generically rational polynomial, we can associate with f a non-negative integer n, where n+1 is the number of places at infinity of a general member F_{α} of $\Lambda_0(f)$, i.e., the number of places of F_{α} whose centers lie outside A_k^2 .

If $d \ge 1$, the pencil $\Lambda(f)$ has base points situated outside A_k^2 . Let $\varphi \colon W \to P_k^2$ be the shortest succession of quadratic transformations with centers at the base points (including infinitely near base points) of $\Lambda(f)$ such that the proper transform Λ' of $\Lambda(f)$ by φ has no base points. Then the linear pencil Λ' defines a morphism $\rho \colon W \to P_k^1$, whose general fibers are the proper transforms of general members of $\Lambda(f)$; thence they are nonsingular rational curves by virtue of Bertini's theorem. Moreover, W contains in a canonical way an open subset isomorphic to A_k^2 . A generically rational polynomial f is said to be of simple type if the morphism ρ has n+1 cross-sections contained in the boundary set $W-A_k^2$ (cf. Definition 1.8, below).

If n=0, a generically rational polynomial f is sent to one of the coordinates x, y of A_k^2 by a biregular automorphism of A_k^2 (cf. Abhyankar-Moh's theorem [1, 4]); hence f is of simple type. If n=1, a generically rational polynomial is always of simple type (cf. Theorem 2.3, below). However, if n>1, a generi-

^{*)} Supported by Grant-in-Aid for Scientific Research