Miyanishi, M. Osaka J. Math. 17 (1980), 329-338

REGULAR SUBRING OF A POLYNOMIAL RING

MASAYOSHI MIYANISHI*)

(Received April 17, 1979)

Introduction. The purpose of this article is to prove the following two theorems:

Theorem 1. Let k be an algebraically closed field of characteristic zero, and let A be a k-subalgebra of a polynomial ring B:=k[x, y] such that B is a flat A-module of finite type. Then A is a polynomial ring in two variables over k.

Theorem 2. Let k be an algebraically closed field of characteristic zero, and let B:=k[x, y, z] be a polynomial ring in three variables over k. Assume that there is given a nontrivial action of the additive group G_a on the affine 3-space $A_k^3:=$ Spec(B) over k. Let A be the subring of G_a -invariant elements in B. Assume that A is regular. Then A is a polynomial ring in two variables over k.

Theorem 1 was formerly proved in part under one of the following additional conditions (cf. [7; pp. 139-142]):

(1) B is etale over A,

(2) A is the invariant subring in B with respect to an action of a finite group.

In proofs of both theorems, substantial roles will be played by the following theorem, which is a consequence of the results obtained in Fujita [1], Miyanishi-Sugie [8] and Miyanishi [6]:

Theorem 0. Let k be an algebraically closed field of characteristic zero, and let $X=\operatorname{Spec}(A)$ be a nonsingular affine surface defined over k. Then the following assertions hold true:

(1) X contains a nonempty cylinderlike open set, i.e., there exists a dominant morphism $\rho: X \rightarrow C$ from X to a nonsingular curve C whose general fibers are isomorphic to the affine line A_k^1 , if and only if X has the logarithmic Kodaira dimension $\overline{\kappa}(X) = -\infty$.

(2) X is isomorphic to the affiine plane A_k^2 if and only if X has the logarithmic Kodaira dimension $\bar{\kappa}(X) = -\infty$, A is a unique factorization domain, and $A^* = k^*$, where A^* is the set of invertible elements in A and $k^* = k - (0)$.

In this article, the ground field k is always assumed to be an algebraically

^{*)} Supported by Grant-in-Aid for Scientific Research