ON STABILITY OF FINITELY GENERATED KLEINIAN GROUPS

Ken-ichi SAKAN

(Received December 5, 1978) (Revised February 17, 1979)

1. Introduction. The conformal automorphisms of the extended complex plane $\hat{C} = C \cup \{\infty\}$ form the Möbius group $M\ddot{o}b$ Every element α of $M\ddot{o}b$ is a transformation of the form

$$\alpha(z) = (az+b)/(cz+d)$$
,

where a,b,c and d are complex numbers with ad-bc=1. Hence $M\ddot{o}b$ may be considered as a 3-dimensional complex Lie group, isomorphic to $SL(2,\mathbf{C})$ modulo its center. We denote by e the identity transformation of $M\ddot{o}b$. An element $\alpha \in M\ddot{o}b$, $\alpha(z)=(az+b)/(cz+d)$, different from e, is called parabolic if $\mathrm{tr}^2\alpha=(a+d)^2=4$; α is called elliptic if $\mathrm{tr}^2\alpha=(a+d)^2\in[0\ 4)$; in all other cases α is called loxodromic.

Let G be a finitely generated Kleinian group, $\Omega = \Omega(G)$ the region of discontinuity of G and $\Lambda = \Lambda(G)$ the limit set of G. Let M(G) be the set of Beltrami coefficients $\mu(z)$ for G supported on $\Omega(G)$, that is, the open unit ball in the closed linear subspace of $L_{\infty}(C)$ determined by the conditions

(1.1)
$$\mu(\gamma z)\overline{\gamma'}(z)/\gamma'(z) = \mu(z), (\gamma \in G)$$

and

$$\mu_{\mathsf{I}\Delta(G)} = 0 ,$$

where $L_{\infty}(C)$ is the complex Banach space consisting of measurable functions μ on C with finite L_{∞} norm $||\mu||$. Let w^{μ} be the uniquely determined quasiconformal automorphism of \hat{C} with the Beltrami coefficient $\mu = w_{\bar{z}}^{\mu}/w_z^{\mu}$, which keeps the points $0, 1, \infty$ fixed. The above condition (1.1) is necessary and sufficient in order that $w^{\mu}G(w^{\mu})^{-1}$ is again a Kleinian group; this is easily checked and is well-known.

Let $\gamma_1, \gamma_2, \dots, \gamma_k$ be a system of generators for G. A homomorphism χ : $G \rightarrow M\ddot{o}b$ is called parabolic if $\operatorname{tr}^2\chi(\gamma) = 4$ for every parabolic element $\gamma \in G$. Let $\chi: G \rightarrow M\ddot{o}b$ be a parabolic homomorphism. Then χ is represented by