TORSION IN BROWN-PETERSON HOMOLOGY AND HUREWICZ HOMOMORPHISMS

DAVID COPELAND JOHNSON* AND ZEN-ICHI YOSIMURA

(Received April 24, 1979)

BP is the Brown-Peterson spectrum (for some prime p) and $BP_*X = \pi_*(BP \land X)$ is the Brown-Peterson homology of the CW spectrum (or complex) X. BP_*X is a left module over the coefficient ring $BP_* \cong Z_{(p)}[v_1, v_2, \cdots]$ and a left comodule over the coalgebra BP_*BP . A now classical result is that the stable Hurewicz homomorphism $\pi_*^S X \to H_*(X; Z)$ is an isomorphism modulo torsion. In our context, we restate this as: the Hurewicz homomorphism $h_0(X): \pi_*(BP \land X) \to H_*(BP \land X; Q)$ has as its kernel the p-torsion subgroup of BP_*X . This is a prototype of our results.

Instead of restricting our attention to BP_*X , it is convenient to study abstract BP_*BP -comodules (M, ψ) , $\psi \colon M \to BP_*BP \otimes_{BP_*}M$. A priori, M is a left BP_* -module. As such, it has a richer potential for torsion than mere p-torsion. For any polynomial generator v_n of BP_* (by convention $v_0 = p$), we say that an element $y \in M$ is v_n -torsion if $v_n^s y = 0$ for some exponent s. If all elements of M are v_n -torsion ones, we say that M is a v_n -torsion module. If no non-zero element of M is v_n -torsion, we say that M is v_n -torsion free. Being a BP_*BP -comodule severely constrains the BP_* -module structure of M.

Theorem 0.1. Let M be a BP_*BP -comodule. If $y \in M$ is a v_n -torsion element, then it is a v_{n-1} -torsion element. Consequently, if M is a v_n -torsion module, then it is a v_{n-1} -torsion module. Or: if M is v_n -torsion free, it is v_{n+1} -torsion free (Lemma 2.3 and Proposition 2.5).

The primitive elements of a BP_*BP -comodule M are those elements a for which $\psi(a)=1\otimes a$ under M's coproduct $\psi: M\to BP_*BP\otimes_{BP_*}M$. We find that some qualitative properties of BP_*BP -comodules are determined by these primitives.

Theorem 0.2 Let M be an associative BP_*BP -comodule. If all the primitives of M are v_n -torsion, then M itself is a v_n -torsion module. Or: if none of the

^{*} Research supported in part by NSF Grant MCS76-06526.