TORSION IN BROWN-PETERSON HOMOLOGY AND HUREWICZ HOMOMORPHISMS

David Copeland JOHNSON* and Zen-ichi YOSIMURA

(Received April 24, 1979)
$B P$ is the Brown-Peterson spectrum (for some prime p) and $B P_{*} X=$ $\pi_{*}(B P \wedge X)$ is the Brown-Peterson homology of the CW spectrum (or complex) $X . \quad B P_{*} X$ is a lefc module over the coefficient ring $B P_{*} \cong Z_{(p)}\left[v_{1}, v_{2}, \cdots\right]$ and a left comodule over the coalgebra $B P_{*} B P$. A now classical result is that the stable Hurewicz homomorphism $\pi_{*}^{S} X \rightarrow H_{*}(X ; Z)$ is an isomorphism modulo torsion. In our context, we restate this as: the Hurewicz homomorphism $h_{0}(X): \pi_{*}(B P \wedge X) \rightarrow H_{*}(B P \wedge X ; Q)$ has as its kernel the p-torsion subgroup of $B P_{*} X$. This is a prototype of our results.

Instead of restricting our attention to $B P_{*} X$, it is convenient to study abstract $B P_{*} B P$-comodules $(M, \psi), \psi: M \rightarrow B P_{*} B P \otimes_{B P_{*}} M$. A priori, M is a left $B P_{*}$-module. As such, it has a richer potential for torsion than mere p-torsion. For any polynomial generator v_{n} of $B P_{*}$ (by convention $v_{0}=p$), we say that an element $y \in M$ is v_{n}-torsion if $v_{n}^{s} y=0$ for some exponent s. If all elements of M are v_{n}-torsion ones, we say that M is a v_{n}-torsion module. If no non-zero element of M is v_{n}-torsion, we say that M is v_{n}-torsion free. Being a $B P_{*} B P$-comodule severely constrains the $B P_{*}$-module structure of M.

Theorem 0.1. Let M be a $B P_{*} B P$-comodule. If $y \in M$ is a v_{n}-torsion element, then it is a v_{n-1}-torsion element. Consequently, if M is a v_{n}-torsion module, then it is a v_{n-1}-torsion module. Or: if M is v_{n}-torsion free, it is v_{n+1}-torsion free (Lemma 2.3 and Proposition 2.5).

The primitive elements of a $B P_{*} B P$-comodule M are those elements a for which $\psi(a)=1 \otimes a$ under M 's coproduct $\psi: M \rightarrow B P_{*} B P \otimes_{B P *} M$. We find that some qualitative properties of $B P_{*} B P$-comodules are determined by these primitives.

Theorem 0.2 Let M be an associative $B P_{*} B P$-comodule. If all the primitives of M are v_{n}-torsion, then M itself is a v_{n}-torsion module. Or: if none of the

[^0]
[^0]: * Research supported in part by NSF Grant MCS76-06526.

