DOUBLY TRANSITIVE GROUPS OF EVEN DEGREE WHOSE ONE POINT STABILIZER HAS A NORMAL SUBGROUP ISOMORPHIC TO PSL(3,2")

YUTAKA HIRAMINE

(Received October 16, 1978)

1. Introduction

Let G be a doubly transitive permutation group on a finite set Ω and $\alpha \in \Omega$. By [4], the product of all minimal normal subgroups of G_{α} is the direct product $A \times N$, where A is an abelian group and N is 1 or a nonabelian simple group.

In this paper we consider the case $N \simeq PSL(3,q)$ with q even and prove the following:

Theorem. Let G be a doubly transitive permutation group on Ω of even degree and let α , $\beta \in \Omega$ ($\alpha \neq \beta$). If G_{α} has a normal subgroup N^{α} isomorphic to PSL(3,q), $q=2^n$, then N^{α} is transitive on $\Omega - \{\alpha\}$ and one of the following holds:

- (i) G has a regular normal subgroup E of order $q^3=2^{3n}$, where n is odd and G_{α} is isomorphic to a subgroup of $\Gamma L(3,q)$. Moreover there exists an element g in $Sym(\Omega)$ such that $\alpha^g = \alpha$, $(G_{\alpha})^g$ normalizes E and $A\Gamma L(3,q) \geq (G_{\alpha})^g E \geq ASL(3,q)$ in their natural doubly transitive permutation representation.
 - (ii) $|\Omega| = 22$, $G^{\Omega} = M_{22}$ and $N^{\omega} \approx PSL(3,4)$.
 - (iii) $|\Omega| = 22$, $G^{\Omega} = Aut(M_{22})$ and $N^{\infty} \simeq PSL(3,4)$.

We introduce some notations.

V(n,q): a vector space of dimension n over GF(q)

 $\Gamma L(n,q)$: the group of all semilinear automorphism of V(n,q)

 $A\Gamma L(n,q)$: the semidirect product of V(n,q) by $\Gamma L(n,q)$ in its natural

action

ASL(n,q): the semidirect product of V(n,q) by SL(n,q) in its natural

action

F(X): the set of fixed points of a nonempty subset X of G

 $X(\Delta)$: the global stabilizer of a subset Δ ($\subseteq \Omega$) in X

 X_{Δ} : the pointwise stabilizer of Δ in X

 X^{Δ} : the restriction of X on Δ Sym(Δ): the symmetric group on Δ