ON SOME DOUBLY TRANSITIVE PERMUTATION GROUPS IN WHICH SOCLE(G_{α}) IS NONSOLVABLE

YUTAKA HIRAMINE

(Received July 3, 1978)

1. Introduction

Let G be a doubly transitive permutation group on a finite set Ω and $\alpha \in \Omega$. In [8], O'Nan has proved that socle $(G_{\alpha}) = A \times N$, where A is an abelian group and N is 1 or a nonabelian simple group. Here socle (G_{α}) is the product of all minimal normal subgroups of G_{α} .

In the previous paper [4], we have studied doubly transitive permutation groups in which N is isomorphic to PSL(2,q), Sz(q) or PSU(3,q) with q even. In this paper we shall prove the following:

Theorem. Let G be a doubly transitive permutation group on a finite set Ω with $|\Omega|$ even and let $\alpha \in \Omega$. If G_{α} has a normal simple subgroup N^{α} isomorphic to PSL(2,q), where q is odd, then one of the following holds.

- (i) G^{Ω} has a regular normal subgroup.
- (ii) $G^{\Omega} \simeq A_6$ or S_6 , $N^{\alpha} \simeq PSL(2,5)$ and $|\Omega| = 6$.
- (iii) $G^{\Omega} \simeq M_{11}$, $N^{\bullet} \simeq PSL(2,11)$ and $|\Omega| = 12$.

In the case that G^{Ω} has a regular normal subgroup, by a result of Hering [3] we have $(|\Omega|, q) = (16, 9)$, (16, 5) or (8, 7).

We introduce some notations:

F(X): the set of fixed points of a nonempty subset X of G

 $X(\Delta)$: the global stabilizer of a subset $\Delta(\subseteq \Omega)$ in X

 X_{Δ} : the pointwise stabilizer of Δ in X

 X^{Δ} : the restriction of X on Δ

m|n: an integer m divides an integer n

 X^{H} : the set of *H*-conjugates of *X*

 $|X|_p$: maximal power of p dividing the order of X

I(X): the set of involutions in X D_m : dihedral group of order m

In this paper all sets and groups are finite.