Finkelstein, L. and Solomon, R. M. Osaka J. Math. 16 (1979), 759-774

STANDARD COMPONENTS OF TYPE M12 AND 3

LARRY FINKELSTEIN¹⁾ and Ronald M. SOLOMON²⁾

(Received June 6, 1977) (Revised March 29, 1979)

Intensive activity in the course of the past few years has brought very close to completion the following problem.

PROBLEM. Let *G* be a finite group with *F*(G)* simple. Let *T* be a subgroup of *G* and *L* a subnormal subgroup of *CG(T)* with *L/O(L)* isomorphic to a known quasisimple group. Identify *G.*

The main contribution to the solution of this problem is the Unbalanced Group Theorem, whose proof now appears to be nearing completion.

Theorem 1.1 (Unbalanced group theorem). *Let G be a finite group with* $F^*(G)$ simple. Let t be an involution of G. Then either G is known or $O(C_G(t))=1$.

We shall call a group G balanced if $0(C_c(t)) \subseteq 0(G)$ for all involutions t of *G.* A crucial corollary to the unbalanced group theorem is the *B(G)* theorem. Before stating this result, we must review some definitions. A perfect subnormal subgroup L of H is said to be a 2-component if $L/0(L)$ is quasisimple. We say that L is a component if $0(L) \subseteq Z(L)$. The 2-layer of H, denoted $L_2(H)$ is the product of all 2-components of H . Similarly, the layer of H , denoted $L(H)$ *,* is the product of all components of *H.*

Theorem 1.2 ($B(G)$ theorem). Let G be a finite group with $0(G)=1$. Let *t* be an involution of L. Then every 2-component of $C_G(t)$ is a component of $C_G(t)$.

The next major contribution to our problem is the Component theorem of Aschbacher and Foote. For G a finite group, let $\mathcal{L}(G)$ be the set of all components of $C_G(t)$ for *t* ranging over the involutions of G . We define a relation $<$ on $\mathcal{L}(G)$ as follows:

 $K \leq L$ if there exists a pair (s, t) of commuting involutions with K a component of $C_G(s)$, L a component of $C_G(t)$ and $K \subseteq LL^s$.

We extend $<$ to a transitive relation \ll on $\mathcal{L}(G)$. We say that K is maximal in $\mathcal{L}(G)$ if $K \ll L$ implies $K \cong L$. Finally we say that K is standard in

¹⁾ First author was partly supported by NSF Grant MCS76-06997

²⁾ Second author was partly supported by NSF Grant MCS75-08346