ON LOGARITHMIC K3 SURFACES

Shigeru IITAKA

(Received August 22, 1978)
(Revised October 27, 1978)

Introduction. By surfaces we mean non-singular algebraic surfaces defined over the field of complex numbers C. A logarithmic $K 3$ surface S is by definition a surface S with $\bar{P}_{g}(S)=1, \bar{\kappa}(S)=\bar{q}(S)=0$, in which $\bar{P}_{g}(S)$ is the logarithmic geometric genus, $\bar{\kappa}(S)$ is the logarithmic Kodaira dimension, and $\bar{q}(S)$ is the logarithmic irregularity. These notions will be explained in $\S 1$.

Let \bar{S} be a completion of S with ordinary boundary D, i.e., \bar{S} is a nonsingular complete surface and D is a divisor with normal crossings on \bar{S} such that $S=\bar{S}-D$. We write D as a sum of irreducible components: $D=C_{1}+\cdots+C_{s}$.

Logarithmic $K 3$ surfaces are classified into the following three types: Type I) $p_{g}(\bar{S})=1$; Then \bar{S} is a $K 3$ surface and D consists of non-singular rational curves C_{i} with negative-definite intersection matrix $\left[\left(C_{i}, C_{j}\right)\right]$.
Type $\left.\mathrm{II}_{\mathrm{a}}\right) \quad p_{g}(\overline{\mathrm{~S}})=0$ and a component C_{1} of D is a non-singular elliptic curve; Then \bar{S} is a rational surface and the graph of D has no cycles.
Type $\left.\mathrm{II}_{\mathrm{b}}\right) \quad p_{g}(\bar{S})=0$ and D consists of rational curves C_{j}; Then \bar{S} is a rational surface and the graph of D has one cycle.

We define A-boundary D_{A} and B-boundary D_{B} of (\bar{S}, D) as follows: 1) If S is of type I, then $D_{A}=\phi$ and $D_{B}=D$. 2) If S is of type II_{a}, then $D_{A}=C_{1}$ (a non-singular elliptic curve) and $D_{B}=C_{2}+\cdots+C_{s}$. 3) If S is of type II_{b}, then $D_{A}=C_{1}+\cdots+C_{r}$ that is a circular boundary (for definition, see $\S 1 \mathrm{v}$)) and $D_{B}=C_{r+1}+\cdots+C_{s}$.

Theorem 1. If $\bar{S}-D_{A}$ has no exceptional curves of the first kind, then $K(\bar{S})+D_{A} \sim 0$.

Next, consider the case where $\bar{S}-D_{A}$ has exceptional curves. Let ρ : $\bar{S} \rightarrow \bar{S}_{*}$ be a contraction of exceptional curves of the first kind on $\bar{S}-D_{A}$, i.e., \bar{S}_{*} is a complete surface and ρ is biregular around D_{A} such that $\bar{S}_{*}-\rho\left(D_{A}\right)$ has no exceptional curves of the first kind. By Theorem 1, $K\left(\bar{S}_{*}\right)+\rho\left(D_{A}\right) \sim 0$.

Theorem 2. $\rho\left(D_{B}\right)$ is a divisor with simple normal crossings. Let $\mathscr{L}_{1}, \cdots, \mathscr{L}_{u}$ be the connected components of $\rho\left(D_{B}\right)$. Then 1) if $\mathscr{Z}_{i} \cap \rho\left(D_{A}\right) \neq \phi, \mathscr{Z}_{i}$ is an exceptional curve of the first kind such that $\left(\mathcal{Z}_{i}, \rho\left(D_{A}\right)\right)=1$. 2) If $\mathscr{L}_{i} \cap \rho\left(D_{A}\right)=\phi$,

