ON STABLE JAMES NUMBERS OF STUNTED COMPLEX OR QUATERNIONIC PROJECTIVE SPACES

HIDEAKI ÖSHIMA

(Received May 20, 1978)

Following James [7] we denote the stunted complex (F=C) or quaternionic (F=H) projective spaces by $FP_{n+k,k}$ (or $P_{n+k,k}$) for positive integers n and k, that is

$$FP_{n+k,k} = FP_{n+k}/FP_n = FP^{n+k-1}/FP^{n-1}.$$

Let d be the dimension of F over the real number field. Let i: $S^{nd} = FP_{n+1,1} \rightarrow FP_{n+k,k}$ be the inclusion. By stable James number $F\{n,k\}$ we mean the order of the cokernel of

$$\deg = i^* : \{ FP_{n+k,k}, S^{nd} \} \to \{ S^{nd}, S^{nd} \} = Z$$

where $\{X, Y\}$ denotes the group of stable maps from a pointed space X to an other pointed space Y. In the previous papers [5, 8, 9, 10] we used the notations $k_s(FP_n^{n+k-1}, S^{nd})$ instead of $F\{n, k\}$ and estimated $F\{1, k\}$.

The first purpose of this note is to determine $F\{n, k\}$ for small k, that is, we shall determine $H\{n, k\}$ for $k \le 4$, estimate them for k=5, determine $C\{n, k\}$ for $k \le 8$ and estimate them for k=9 and 10. These shall be done in §2 and §3. The second purpose is to show that $F\{n, k\}$ can be identified with the James numbers defined by James in [6]. This shall be done in §4.

An application of this note to F-projective stable stems shall be given in [11].

In this note we work in the stable category of pointed spaces and stable maps between them, and we use Toda's notations of stable stems and Toda brackets in [14] freely.

The author wishes to thank Mr. Y. Hirashima for his kind advices.

1. Preliminaries

In what follows we shall be working with both real K-cohomology theory KO^* and complex K-cohomology theory K^* . We use the following notations. KO^* and K^* denote both the K-functors and the coefficient rings. By the same letter $\xi = \xi_n$ we denote the canonical F-line bundle over FP_n ,