Watanabe, T. Osaka J. Math. 16 (1979), 471-478

COHOMOLOGY OPERATIONS IN THE LOOP SPACE OF THE COMPACT EXCEPTIONAL GROUP F4

Dedicated to Professor A. Komatu on his 70-th birthday

TAKASHI WATANABE

(Received April 14, 1978)

1. Introduction

Let F_4 be the compact, simply connected, exceptional Lie group of rank 4. In [6] we have described the Hopf algebra structure of $H_*(\Omega F_4;Z)$. Using this thoroughly, we can compute the action of the mod p Steenrod algebra \mathcal{A}_p on $H^*(\Omega F_4;Z_p)$ for every prime p. But here we deal with the cases p=2 (Theorem 4) and p=3 (Theorem 5) only, because in the other cases the result follows immediately from a spectral sequence argument for the path fibration $\Omega F_4 \rightarrow$ $PF_4 \rightarrow F_4$.

Let $C(=C_s)=T^1 \cdot Sp(3)$ in the notation of [3], which is a closed connected subgroup of F_4 . Then in [6] the homogeneous space F_4/C has been found to be a generating variety for F_4 . That is, there exists a map $f_s: F_4/C \to \Omega F_4$ such that the image of $f_{s^*}: H_*(F_4/C; Z) \to H_*(\Omega F_4; Z)$ generates the Pontrjagin ring $H_*(\Omega F_4; Z)$. In this situation Bott [1, §6] asserted that the Steenrod operations in $H^*(\Omega F_4; Z_p)$ can be deduced from their effect on $H^*(F_4/C; Z_p)$. This is the motive of our work.

Throughout the paper X will always denote any connected space such that $H_*(X; Z)$ is of finite type.

2. The generating variety

In this section we shall compute the \mathcal{A}_p -module structure of $H^*(F_4/C; Z_p)$ for p=2 and 3.

First since C contains a maximal torus T of F_4 , we have a commutative diagram

(2.1)
$$\begin{array}{c} F_4/T \xrightarrow{q} F_4/C \\ \downarrow \iota \qquad \qquad \qquad \downarrow j \\ BT \xrightarrow{\rho} BC . \end{array}$$

We require the following notations and results (2.2)-(2.6), whose details can be found in $[3, \S4]$: