Koiso, N. Osaka J. Math. 16 (1979), 423-429

A DECOMPOSITION OF THE SPACE *M* OF RIEMANNIAN METRICS ON A MANIFOLD

NORIHITO KOISO

(Received March 6, 1978)

0. Introduction

Let M be a compact C^{∞} -manifold. We denote by \mathcal{M}, \mathcal{D} and \mathcal{F} the space of all riemannian metrics on M, the diffeomorphism group of M, and the space of all positive functions on M, respectively. Then the group \mathcal{D} and \mathcal{F} acts on \mathcal{M} by pull back and multiplication, respectively. D. Ebin and N. Koiso establish Slice theorem [4, Theorem 2.2] on the action of \mathcal{D} .

In this paper, we shall give a decomposition theorem on the action of \mathcal{F} (Theorem 2.5). That is, there is a local diffeomorphism from $\mathcal{F} \times \overline{C}$ into \mathcal{M} where \overline{C} is a subspace of \mathcal{M} of riemannian metrics with volume 1 and of constant scalar curvature τ_g such that $\tau_g=0$ or $\tau_g/(n-1)$ is not an eigenvalue of Δ_g . Combining the above theorems, we get the following decomposition of a deformation (Corollary 2.9). Let $g \in \overline{C}$ and g(t) be a deformation of g. Then there are a curve f(t) in \mathcal{F} , a curve $\gamma(t)$ in \mathcal{D} and a curve $\overline{g}(t)$ in \overline{C} such that $\delta \overline{g}'(0)=0$, which satisfy the equation $g(t)=f(t)\gamma(t)^*\overline{g}(t)$. (For the operator δ , see 1.)

The author wishes to express his thanks to the referee.

1. Preliminaries

First, we introduce notation and definitions which will be used throughout this paper. Let M be an *n*-dimensional, connected and compact C^{∞} -manifold, and we always assmue $n \ge 2$. For a vector bundle T over M, we denote by H'(T)the space of all H'-sections, where H' means an object which has derivatives defined almost everywhere up to order r and such that each partial derivative is square integrable. Then H'(T) is isomorphic to a Hilbert space and the space $C^{\infty}(T)$ of all C^{∞} -sections becomes an inverse limit of $\{H'(T)\}_{r=1,2,\cdots}$. Therefore such a space is said to be an ILH-space. If a topological space \mathcal{X} is isomorphic to an ILH-space locally, \mathcal{X} is said to be an ILH-manifold. For details, see [5].