Sumioka, T. Osaka J. Math. 16 (1979), 395-403

ON QF-3 AND I-GORENSTEIN RINGS

TAKESHI SUMIOKA

(Received May 6, 1978)

Let R be a ring with identity, E the injective hull of R_R and Q the maximal right quotient ring of R. Consider the following conditions.

 A_1 : *E* is projective.

 A_2 : R has a minimal faithful right R-module.

 A_3 : R has a faithful injective right ideal.

 A_4 : *E* is torsionless.

 A_5 : Any finitely generated submodule of E is torsionless.

 A_6 : Any finitely generated submodule of Q is torsionless.

For arbitrary ring $R, A_2 \Rightarrow A_3 \Rightarrow A_4 \Rightarrow A_5 \Rightarrow A_6$ hold (see [14, p, 47]). On the other hand if R is a left perfect ring, A_2, A_3 and A_4 are equivalent (see [4, Theorem 3.2], [1, Theorem 2] and [13, Proposition 3.1]). Any commutative integral domain which is not a field satisfies A_5 , but does not satisfy A_4 . However, Rutter [8, Corollary 3] proved that for any right or left artinian ring $R A_5$ implies A_2 . In § 2 we shall define a new ring, called a right DWA ring, which is a generalization of a right semi-artinian ring, and we shall show that for any right DWA and right perfect ring $R A_5$ implies A_3 . As a consequence, for any perfect ring $R A_5$ implies A_2 . We owe the method of the proof essentially to Rutter [8, Lemma 2] and the proofs of Colby and Rutter [1, Theorem 2] and Jans [4, Theorem 3.2]. We call a ring R right QF-3 if R satisfies A_5 and R right QF-3' if R satisfies A_6 .

By Wu, Mochizuki and Jans [16] (or Colby and Rutter [1, Theorem 1] and Kato [6, Remark, p. 236]), a characterization of right artinian rings satisfying A_1 (or rings satisfying A_4) was given. In § 3 we shall give an analogous result for right QF-3 rings. In § 4 we shall show that any right QF-3' and right 1-Gorenstein ring is QF-3 (see § 4 for the definition of a 1-Gorenstein ring). Moreover using this result, we shall show that any noetherian right QF-3' ring such that $E \oplus E/R$ is an injective cogenerator is right and left 1-Gorenstein.

1. Definitions and notations

Throughout this note we assume that R is a ring with identity and all R-modules are unitary. We denote by E the injective hull of R_R and by Q the