Yagi, A. Osaka J. Math. 16 (1979), 301-315

ON A CLASS OF LINEAR EVOLUTION EQUATIONS OF "HYPERBOLIC" TYPE IN REFLEXIVE BANACH SPACES

ATSUSHI YAGI

(Received January 18, 1978)

1. Introduction

We are concerned with the Cauchy problem for linear evolution equations

$$du/dt + A(t)u = f(t), \ 0 \le t \le T , \tag{1.1}$$

of "hyperbolic" type in a Banach space E. "Hyperbolic" type means that the linear opeators -A(t) are the infinitesimal generators of C_0 -semigroups on E. In this paper, as T. Kato [1], [2], [3] and [4], we deal with the class that there exists a certain dense linear manifold F in E contained in all the domains D(A(t)).

Roughly speaking, our assumptions consist of the reflexivity of E, strong continuity in t of A(t) and its dual A(t)', the stability of $\{A(t)\}$ on E and F (see §2) and the existence of a mollifying operator for $\{A(t)\}$ (see §3). Those are closely related among others to [3]. The main difference lies in weakening the smoothness condition of A(t) in t instead of adding the reflexivity of E. In [3] the norm-continuity of A(t): $F \rightarrow E$ is assumed.

In the proof of our theorem essential use is made of the energy estimates as S. Mizohata [7]. Hence the proof is quite different from [3] in which the integral equations take effect. The author wonders if, even under such a weak smoothness condition of A(t), one can prove *a priori* the strong convergence of $U_n(t, s)$ in §4.

We note here some notations and terminology used in the sequel. The norm of a Banach space E is denoted by $||\cdot||_E$. The inner product by $(\cdot, \cdot)_E$, if E is Hibert. E' is the dual space of E, and $\langle \cdot, \cdot \rangle$ is the scalar product of E' and E. E_w is the locally convex space endowed with the weak topology. Let F be another Banach space. $\mathcal{L}(E; F)$ is the Banach space of all bounded linear operators of E to F with the uniform norm $||\cdot||_{F,E}$, and $\mathcal{L}_s(E; F)$ is the locally convex space with the strong topology. We will abbreviate $\mathcal{L}(E; E)$ as $\mathcal{L}(E)$, $||\cdot||_{E,E}$ as $||\cdot||_E$ and so forth. For a linear operator A of E and a linear manifold $G \subset D(A)$ in E, A_{1G} is the restriction of A to G. A' is the dual of $A \in \mathcal{L}(E; F)$. A^* is the ajoint of A, if A is a densely defined linear operator in a Hilbert