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1. Introduction

We are concerned with the Cauchy problem for linear evolution equations

, (1.1)

of "hyperbolic'* type in a Banach space E. "Hyperbolic" type means that
the linear opeators — A(t) are the infinitesimal generators of Co-semigroups on
E. In this paper, as T. Kato [1], [2], [3] and [4], we deal with the class that

there exists a certain dense linear manifold F in E contained in all the domains
D(A(t)).

Roughly speaking, our assumptions consist of the reflexivity of £*, strong
continuity in t of A(t) and its dual A(f)', the stability of (A(t)} on E and F

(see §2) and the existence of a mollifying operator for {A(t)} (see §3).
Those are closely related among others to [3]. The main difference lies in
weakening the smoothness condition of A(t) in t instead of adding the reflexivity
of E. In [3] the norm-continuity of A(t): F-+E is assumed.

In the proof of our theorem essential use is made of the energy estimates
as S. Mizohata [7]. Hence the proof is quite different from [3] in which the
integral equations take effect. The author wonders if, even under such a weak
smoothness condition of A(i), one can prove a priori the strong convergence of
Un(t, s) in §4.

We note here some notations and terminology used in the sequel. The

norm of a Banach space E is denoted by \\ \\E. The inner product by ( , )£,
if E is Hibert. E/ is the dual space of E, and <(-, •)> is the scalar product of
Ef and E. Ew is the locally convex space endowed with the weak topology. Let

F be another Banach space. -C(β\ F) is the Banach space of all bounded linear

operators of E to F with the uniform norm || ||F,£> an<l -Cs(E-\ F} is tne locally
convex space with the strong topology. We will abbreviate -C(E\ E) as -C(E),

I I * \\E E as II HE and so forth. For a linear operator A of E and a linear manifold
GdD(A) in E, A\G is the restriction of A to G. A' is the dual of A^X(E\ F).
A* is the ajoint of A, if A is a densely defined linear operator in a Hubert


