H-PROJECTIVE CONNECTIONS AND H-PROJECTIVE TRANSFORMATIONS

YASHIRO YOSHIMATSU

(Received May 16, 1977)

Introduction

Let M be an n-dimensional complex manifold. We write J for its natural almost complex structure. Let ∇ be an almost complex affine connection without torsion on M. A curve c(t) in M is called an H-planner curve with respect to ∇ if

$$\nabla_{c'}c' = ac' + bJc'$$

for certain smooth functions a and b. Two almost complex affine connections ∇ and ∇' without torsion are said to be *H-projectively equivalent* if they have their *H*-planner curves in common. From the result of T. Otsuki and Y. Tashiro, this is equivalent to existence of a 1-form ρ on M satisfying

$$(0.2) \qquad \nabla_X Y - \nabla_X' Y = \rho(X)Y + \rho(Y)X - \rho(JX)JY - \rho(JY)JX$$

for arbitrary vector fields X and Y ([5], [8]). By an H-projective transformation of ∇ , we mean a biholomorphic transformation $f: M \rightarrow M$ such that $f^*\nabla$ and ∇ are H-projectively equivalent. For example, let $P^n(C) = L/L_0$ be the n-dimensional complex projective space of lines in C^{n+1} with the usual connection, where

(0.3)
$$L = SL(n+1, \mathbf{C}),$$

$$L_0 = \left\{ \begin{pmatrix} a & u \\ 0 & B \end{pmatrix} \in SL(n+1, \mathbf{C}) | B \in GL(n, \mathbf{C}) \right\}.$$

Then L/(center) is the group of all H-projective transformations.

In the present paper, we shall study H-projective equivalence from the view point of L_0 -structure of second order, studied by N. Tanaka and T. Ochiai. In fact, we shall show that H-projective equivalence of ∇ and ∇' is the same as $P^n(C)$ -equivalence in [6] and [4] (Theorem 1). Therefore, using their results, the family $\{\nabla\}$ of almost complex affine connections without torsion which are H-projectively equivalent to ∇ uniquely determines a Cartan connection ω of type $P^n(C)$. This enables us to show that the group of all H-projective