ON THE IMBEDDING OF DERIVATIONS OF FINITE RANK INTO DERIVATIONS OF INFINITE RANK

WILLIAM C. BROWN

(Received February 14, 1977)

Introduction. Throughout this paper, we shall let $A=k[x_1,\cdots,x_n]$ denote a finitely generated integral domain over a perfect field k. Let p be a maximal ideal of A and set $R=A_p$, the local ring at p. By a k-derivation δ of rank m on R, we shall mean a set $\delta=\{\delta_0,\delta_1,\cdots,\delta_m\}$ of mappings $\delta_i\in \operatorname{Hom}_k(R,R)$ such that δ_0 is the identity map on R and for all $a,b\in R$, $q=1,\cdots,m$, we have

(1)
$$\delta_q(ab) = \sum_{i+1=q} \delta_i(a)\delta_j(b).$$

By a k-derivation D of infinite rank on R, we shall mean an infinite sequence $D = \{D_0, D_1, D_2, \cdots\}$ of k-endomorphisms D_i of R such that for each m, $\{D_0, D_1, \dots, D_m\}$ is a k-derivation of rank m on R. We shall say that a k-derivation $\delta = \{\delta_0, \delta_1, \dots, \delta_m\}$ of rank m on R (or A) is integrable on R(A) if there exists a k-derivation $D = \{D_0, D_1, \dots\}$ of infinite rank on R(A) such that $\delta_i = D_i$, $i = 0, 1, \dots, m$.

The problem of finding conditions on R such that every k-derivation of rank m is integrable was to the author's knowlege first suggested by Y. Nakai in [7]. Some work on this problem has been done by several authors. In particular, it follows from [8; (q)p.33] that if the characteristic of the field k is zero, then every k-derivation of rank m on R is integrable. For this reason, we can assume throughout the rest of this paper that char $k=\rho \pm 0$.

The main results of this paper are the following two theorems: A global results:

Theorem 1. Let $A=k[x_1,\dots,x_n]$ be a finitely generated integral domain over a perfect field k. Suppose that for each maximal ideal $p \subset A$, the local ring A_p is regular. Then any k-derivation δ of finite rank on A is integrable on A.

A complete characterization of regularity on the local level:

Theorem 2. Let $A = k[x_1, \dots, x_n]$ be a finitely generated integral domain over a perfect field k. Let p be a maximal ideal of A and set $R = A_p$ (A localized at p). Assume A has dimension r. Then R is a regular local ring if and only if the following two conditions are satisfied: