Carroll, R. Osaka J. Math. 14 (1977), 609–618

SOME REMARKS ON DEGENERATE CAUCHY PROBLEMS IN GENERAL SPACES

ROBERT CARROLL

(Received November 15, 1976)

1. Introduction. We will consider problems of the form

(1.1) $u'' + s(t)u' + Ar(t)u - A^2a(t)u + b(t)u = f$

$$(1.2) u(0) = u'(0) = 0$$

where A is the generator of a locally equicontinuous group T(t) in a complete separated locally convex space $E(cf. [8; 14]), u \in C^2(E), f \in C^0(E), s, r, a, and b$ are continuous real valued functions, while a(t) > 0 for t > 0 with a(0)=0. This is an extension of the Cauchy problem for Tricomi equations and various general versions of (1.1)-(1.2) have been considered for example in [1; 2; 7; 8; 10; 15; 16; 18; 22; 23; 24]; for an extensive bibliography see [8]. We will adapt a method of Hersh [13] as extended by the author in [4, 5; 6; 8], to solve (1.1)-(1.2) and prove some uniqueness theorems. The behavior of $\int_{\tau}^{T} (r^2/a)(\xi) d\xi$ as $\tau \to 0$ again turns out to play a critical role in uniqueness (as in [7; 8; 23; 24]) and is related to conditions of Krasnov [15] and Protter [18] in their specific contexts. Let us note that a typical case involves $A^2 = \Delta$ in a suitable space E (cf. [8]).

2. Following [4; 5; 6; 8; 13] we replace A by -d/dx in (1.1) and consider

(2.1)
$$w'' + s(t)w' - r(t)w_x - a(t)w_{xx} + b(t)w = 0$$

where $w(t) \in \mathscr{G}_{x}'$ (detailed properties are indicated below). Let us Fourier transform (2.1) in the x variable, writing formally $\hat{w}(t) = \mathcal{F}w(t) = \int_{-\infty}^{\infty} w(t) \exp ixy \, dx$, to obtain

(2.2)
$$\hat{w}'' + s(t)\hat{w}' + iyr(t)\hat{w} + a(t)y^2\hat{w} + b(t)\hat{w} = 0$$

It will be convenient to elminate the b(t) term as follows. Let $\hat{w}(t) = \hat{v}(t) \exp \int_{0}^{t} \gamma(\xi) d\xi$ where $\gamma(t)$ satisfies the Riccati equation