Ray-Chaudhuri, D.K. and Wilson, R.M. Osaka J. Math. 12 (1975), 737-744

ON t-DESIGNS

DIJEN K. RAY-CHAUDHURI* AND RICHARD M. WILSON**

(Received January 14, 1975)

Introduction and preliminaries

An *incidence structure* is a triple $S = (X, \mathcal{A}, \mathcal{G})$ where X and \mathcal{A} are disjoint sets and $\mathcal{G} \subseteq X \times \mathcal{A}$. Elements $x \in X$ are called *points* and elements $A \in \mathcal{A}$ are called *blocks* of S. A point x and a block A are *incident* iff $(x, A) \in \mathcal{G}$. For any block A, (A) will denote the set of points incident with A.

Let v, k, t and λ be integers with $v \ge k \ge t \ge 0$ and $\lambda \ge 1$. An $S_{\lambda}(t, k, v)$ (a t-design on v points with block size k and index λ) is an incidence structure $D=(X, \mathcal{A}, \mathcal{J})$ such that

- (i) |X| = v,
- (ii) |(A)| = k for every $A \in \mathcal{A}$,
- (iii) for every *t*-subset T of X, there are exactly λ blocks $A \in \mathcal{A}$ with $T \subseteq (A)$.

It is well known that every $S_{\lambda}(t, k, v)$ has exactly $b = \lambda \begin{pmatrix} v \\ t \end{pmatrix} / \binom{k}{t}$ blocks and more generally, for any *i*-subset *I* of points $(0 \le i \le t)$, the number of blocks *A* of the design with $I \subseteq (A)$ is

$$b_i = \lambda rac{inom{v-i}{t-i}}{inom{k-i}{t-i}},$$

independent of the subset I [2].

Abstract: We present the generalization (conjectured by A. Ja. Petrenjuk) of Fisher's Inequality $b \ge v$ for 2-designs and Petrenjuk's Inequality $b \ge \binom{v}{2}$ for 4-designs. The *t*-designs satisfying the inequality with equality may be considered as generalizations of the symmetric 2-designs (b=v) and have the property that there are exactly $\frac{1}{2}t$ possible values for the size of the intersection of two distinct blocks, these values being computable from the parameters.

^{*} This research was supported in part by ONR NOOO14-67-A-0232-0016 (OSURF 3430A2).

^{**} This research was supported in part by N.S.F. Grant GP-28943 (OSURF Project No. 3228-A1).