A NOTE ON DIRECT SUMS OF CYCLIC MODULES OVER COMMUTATIVE REGULAR RINGS

KIYOICHI OSHIRO

(Received December 18, 1974)

Throughout this note R is a commutative ring with identity and all modules are unital.

We denote the maximal ring of quotients of R by Q(R) and the ring generated by the set of all idempotents of Q(R) over R by C(R). In case R is semiprime, C(R) coincides with the Baer hull of R in the sense of A. C. Mewborn ([3, Proposition 2.5]). For an *R*-module M, we denote its injective hull by $E_R(M)$. It is well known (e.g. [1]) that if R is semi-prime, then $Q(R) = E_R(R)$.

Let M be an R-module. We put

 $T(M) = \{x \in M \mid \operatorname{Hom}_{R}(Rx, E_{R}(R)) = 0\}$ $= \{x \in M | (0:x) \text{ is a dense}^{\dagger} \text{ ideal of } R\}$

where $(0:x) = \{r \in R | rx = 0\}$ (see [7]). M is said to be torsion if T(M) = M and torsion free if T(M)=0.

Now, for an *R*-module *M*, we shall consider the following condition studied in [4]:

(*) M is embedded in a direct sum of cyclic R-modules as an essential Rsubmodule.

In [4] the author proved the following

Theorem 1. Let R be a regular ring. Then the following conditions are equivalent:

- (a) Q(R) = C(R).
- (b) Every finitely generated torsion free R-module M satisfies the condition (*)

The purpose of this note is to prove the following two theorems.

Theorem 2. Let R be a regular ring. Then the following conditions are equivalent:

(a) Q(R|I) = C(R|I) for every dense ideal I of R.

[†] An ideal I of R is said to be dense provided that for any r and r' in R with $r' \neq 0$, there exists s in R such that $sr \in I$ and $sr' \neq 0$.