Nagao, H. and Nomura, K. Osaka J. Math. 12 (1975), 635–638

A NOTE ON A FIXED-POINT-FREE AUTOMORPHISM AND A NORMAL P-COMPLEMENT

HIROSI NAGAO AND KAZUMASA NOMURA

(Received October 17, 1974)

1. Introduction

Let A be a group of automorphisms of a group G, and denote by $C_G(A)$ the subgroup of G consisting of all the elements fixed by A. If $C_G(A)=1$ then A is said to be fixed-point-free. The purpose of this note is to prove the following two theorems.

The first theorem is an extension of a result of F. Gross ([2], Theorem 3.5).

Theorem 1. Let A be a group of automorphisms of a finite group G and p a prime divisor of |G|. Suppose that either A is cyclic and fixed-point-free or (|A|, |G|)=1 and $C_G(A)$ is a p-group. If a Sylow p-subgroup P of G is of the form

$$P = P_1 \times P_2 \times \cdots \times P_I$$

where P_i is a direct product of m_i cyclic subgroups of order p^{n_i} with $n_1 < n_2 < \cdots < n_l$ and if each m_i is less than any prime divisor of |A|, then G has a normal p-complement.

If an abelian *p*-group *P* is of the form as in the theorem above, we denote $\sum_{i=1}^{l} m_i$ by m(P), and $\max_{1 \le i \le l} m_i$ by $\tilde{m}(P)$.

For a *p*-group P, ZJ(P) denotes the center of the Thompson subgroup of P and we define $(ZJ)^{i}(P)$ recursively by the rule

$$(ZJ)^{\circ}(P) = 1$$
, $(ZJ)^{1}(P) = ZJ(P)$, and $ZJ(P/(ZJ)^{i-1}(P)) = (ZJ)^{i}(P)/(ZJ)^{i-1}(P)$.

In a case of p odd Theorem 1 can be extended as follows.

Theorem 2. Let G be a finite group, p an odd prime divisor of |G| and P a Sylow p-subgroup of G. Suppose that G has a group A of automorphisms satisfying the same assumption as in Theorem 1. If each $\tilde{m}((ZJ)^i(P)/(ZJ)^{i-1}(P))$ is less than any prime divisor of |A|, then G has a normal p-complement.