Minami, H. Osaka J. Math. 12 (1975), 623-634

K-GROUPS OF SYMMETRIC SPACES I

HARUO MINAMI

(Received February 14, 1975)

Introduction

In this paper we consider the unitary K-groups of compact homogeneous spaces of Lie groups and in particular, we lay emphasis on the compact symmetric spaces.

For a compact connected Lie group G with $\pi_1(G)$ torsion-free as a symmetric space it is known that the K-group $K^*(G)$ of G is an exterior algebra on the elements of $K^{-1}(G)$ induced by the basic representations of G [2], [3], [7]. Making use of this result Hodgkin constructed the Kunneth formula spectral sequence in equivariant K-theory [8], [9]. This spectral sequence is our main tool in the present study. Besides we find some examples of the K-groups of symmetric spaces in [5].

The main theorem of this paper is the following

Theorem A. Let G be a compact connected simply-connected Lie group together with the involutive automorphism σ and K the subgroup of G consisting of fixed points of σ . When we write M for the homogeneous space G/K, we have

(i) There are elements ρ_1, \dots, ρ_l of R(G) such that

$$\sigma^*(\rho_k) = \rho_k \ (r+1 \leq k \leq l) \qquad \text{for some } r \text{ and}$$
$$R(G) = Z[\rho_1, \cdots, \rho_r, \sigma^*(\rho_1), \cdots, \sigma^*(\rho_r), \rho_{r+1}, \cdots, \rho_l]$$

(ii) The natural homomorphism $\alpha: Z \bigotimes_{R(G)} R(K) \to K^{\circ}(M)$ becomes a monomorphism (Section 1) and if we identify an element of $Z \bigotimes_{R(G)} R(K)$ with its image by α , then we can write

$$K^*(M) = \Lambda(\beta(\rho_1 - \sigma^*(\rho_1)), \cdots, \beta(\rho_r - \sigma^*(\rho_r))) \otimes (Z \bigotimes_{r \in I} R(K)).$$

where $\beta(\rho_k - \sigma^*(\rho_k))$ is the element of $K^{-1}(M)$ induced by the representations ρ_k and $\sigma^*(\rho_k)$ in (i) for $k=1, \dots, r$ (Section 1).

(iii) $K^*(M)$ is torsion-free.

The arrangement of this paper is as follows.