UNIPOTENT ELEMENTS AND CHARACTERS OF FINITE CHEVALLEY GROUPS

NORIAKI KAWANAKA*

(Received January 6, 1975)

Introduction

Let $\mathbb C$ be a connected semisimple linear algebraic group defined over an algebraically closed field K of characteristic p>0, and σ a surjective endomorphism of $\mathbb C$ such that the group $\mathfrak G_\sigma$ of elements fixed by σ is finite. The finite groups $\mathfrak G_\sigma$ obtained in this manner can be classified as follows (Steinberg [20]): If $\mathbb C$ is simple, $\mathfrak G_\sigma$ is either the group of rational points of a F-formof $\mathbb C$ for an appropriate finite field F or one of the groups defined by M. Suzuki and R. Ree. If $\mathbb C$ is not simple, $\mathfrak G_\sigma$ is essentially a direct product of the groups mentioned above.

In this paper, a finite group G is called a finite Chevalley group¹⁾ if it can be realized as \mathfrak{G}_{σ} for some \mathfrak{G} and σ . Let (G, B, N, S) be a Tits system (or BN-pair) associated to a finite Chevalley group G. We denote by W its Weyl group. Let G^1 be the set of unipotent elements (or p-elements) of G and G and G are subgroup of G contained in G. The main purpose of this paper is to establish the following two results:

- (I) Let w be an arbitrary element of W, and w_s the element of W of maximal length. Then the number of unipotent elements contained in the double coset BwB is I $BwB \sqcap w_s Uw_s^{-1} \mid U \mid$, which can be written explicitly as a polynomial in $q_s = |BsB/B|$ ($s \in S$)²⁾. (As a corollary, we obtain $|G^1| = |U|$, a result of Steinberg [20].)
- (II) Assume that the characteristic p is good (see Definition 6.2) for \mathbb{C} . Let g be an element of $G=\mathfrak{G}_{\sigma}$, and C a regular unipotent conjugacy class of G. Then the number $|Bg\cap C|$ depends neither on g nor C.

As far as the author knows, these results are new even for $G=SL_n(F)$ with F a finite field. In this case an arbitrary prime is good and a unipotent element

^{*} This research was supported in part by the Sakkokai Foundation and the Yukawa Foundation.

¹⁾ This definition is slightly different from the one given, for example, in [19]. But such difference is not essential for our purpose.

²⁾ For a finite set A, |A| denotes the number of its elements.