ON PERFECT RINGS AND THE EXCHANGE PROPERTY

Dedicated to Professor Kiiti Morita on his 60th birthday

Manabu HARADA AND TADAMASA ISHII

(Received July 22, 1974)

Let R be a ring with unit element. We always consider unitary right R-modules. Let T be an R-module and η a cardinal number. If for any module K containing T as a direct summand and for any decomposition of K with η components: $K = 2 \bigoplus_{\alpha \in I} \bigoplus A_{\alpha}$, there exist submodules A_{α}' of A_{α} for all a such that $K = T \bigoplus_{\alpha \in I} \bigoplus A_{\alpha}'$, then we say T has the η -exchange property [2]. If T has the η -exchange property for any η , we say T has the exchange property.

In this short note we shall show that R is a right perfect ring if and only if for every projective module P, P has the exchange property and $\operatorname{End}_R(P)/J(\operatorname{End}_R(P))$ is a regular ring in the sense of Von Neumann. This is a refinement of Theorem 7 in [4] and we shall give its proof as an application of [6].

After submitting this paper to the journal, the authors have received a manuscript of Yamagata [13] and found that one of main theorems in this paper overlaped with one in [13]. The authors would like to express their thanks to Dr. Yamagata for his kindness.

1. Preliminaries

First we shall recall some definitions given in [3], [4] and [6]. Let T be an R-module. If $\operatorname{End}_R(T)$ is a local ring, T is called *completely indecomposable*. We take a set $\{M_{\alpha}\}_I$ of completely indecomposable modules and define the full additive subcategory $\mathfrak A$ of all right R-modules which is induced from $\{M_{\alpha}\}_I$, namely the objects in $\mathfrak A$ consist of all modules which are isomorphic to directsums of completely indecomposable modules in $\{M_{\alpha}\}_I$. We define an ideal $\mathfrak A'$ in $\mathfrak A$ as follows: let $A = \sum_{\alpha \in K} \oplus A_{\alpha}$, $B = \sum_{\beta \in L} \oplus B_{\beta}$ be in $\mathfrak A$, where A_{α} , B_{β} are isomorphic to some in $\{M_{\alpha}\}_I$, then $\mathfrak A' \cap [A,B] = \{f \models \operatorname{Hom}_R(A,B), p_{\beta} f_{i_{\alpha}}$ are not isomorphic for all $\alpha \in K, \beta \in L\}$, where $i_{\alpha}: A_{\alpha} \to A, p_{\beta}: B \to B_{\beta}$ are the inclusion and the projection, respectively. By $\overline{\mathfrak A}$ we denote the factor category of $\mathfrak A$ with respect to $\mathfrak A'$ [3]. For any object A and morphism f in $\mathfrak A$, by \overline{A} and \overline{f} we denote the residue classes of A and f in $\mathfrak A'$, respectively.