PRODUCTS OF TORSION THEORIES AND APPLICATIONS TO COALGEBRAS

I-PENG LIN

(Received March 25, 1974)

1. Introduction

Throughout this note R is a ring with 1. We shall write $/ \le R$ if / is a right ideal of R. A non-empty set of right ideals Γ of R is called a Gabriel filter if it satisfies

- T1. If $I \in \Gamma$ and $r \in R$, then $(I:r) \in \Gamma$.
- T2. If f is a right ideal and there exists $f \in \Gamma$ such that f for every $f \in f$, then $f \in \Gamma$.

It is well-known [4] that there is a one to one correspondence between Gabriel filters of R and hereditary torsion theories for the category of right R-modules. W. Schelter [3] investigated products of torsion theories or equivalently of Gabriel filters that for a family of pairs $\{(R_i, \Gamma_i), \Gamma_i : Gabriel filter of <math>R_i\}$, $\Gamma_0 = \{D \leq \pi R_i | D \supseteq \sum_{\oplus} D_i, D_i \in \Gamma_i\}$ is a Gabriel filter of the product ring πR_i , furthermore the ring of right quotient of πR_i with respect to Γ_0 is isomorphic to the product of rings of right quotient of R_i with respect to Γ_i : $(\pi R_i)_{\Gamma_0} \cong \pi(R_i)_{\Gamma_i}$. This result generalizes one of Y. Utumi theorems [6]. In this paper these two sets $\Gamma_1 = \{D \leq \pi R_i | D \supseteq \pi D_i, D_i \in \Gamma_i\}$ and $\Gamma_2 = \{D \leq \pi R_i | D \supseteq \pi D_i, D_i \in \Gamma_i\}$ and almost all $D_i = R_i\}$ will be studied. Γ_1 does not always satisfy T2. A necessary and sufficient condition for Γ_1 to be a Gabriel filter is given. It follows that Γ_1 is a better notion of products of perfect torsion theories. However Γ_2 is a Gabriel filter of πR_i , and we use this fact to prove that over an algebraically closed field, cocommutative coalgebra has a torsion rat functor if and only if each space of primitives of its irreducible components is finitedimensional.

For a coalgebra (C, Δ, \mathcal{E}) over a field K, there exists a natural algebra structure on its dual space $C^*=\operatorname{Hom}_K(C, K)$ induced by the diagonal map Δ and every left comodule (M, ϕ_M) over C can be defined as a right C^* -module by $mc^*=(c^*\otimes 1)\phi_M(m), m\in M, c^*\in C^*$. Moroever a right C^* -module M is called a rational module if it is a left comodule (M, ϕ_M) over C and its right C^* -module structure is derived in the way described above. With these observations we can embed the category of left C-comodules C^* , as a full subcategory, into the category of right C^* -modules \mathcal{N}_{C^*} . A subspace C^* of C^* is called cofinite