Hotta, R. and Wallach, N.R. Osaka J. Math. 12 (1975), 419-431

ON MATSUSHIMA'S FORMULA FOR THE BETTI NUMBERS OF A LOCALLY SYMMETRIC SPACE

RYOSHI HOTTA AND NOLAN R. WALLACH

(Received September 11, 1974) (Revised December 9, 1974)

1. Introduction. Let G be a connected semi-simple Lie group with finite center and with no connected normal, compact subgroups. Let $K \subset G$ be a maximal compact subgroup and let $\Gamma \subset G$ be a discrete subgroup acting freely on X=G/K and so that $\Gamma \setminus G$ is compact. Let $M=\Gamma \setminus X$ then M is a typical compact locally symmetric space of negative curvature. Let G act by the right regular action, π_{Γ} , on $L^2(\Gamma \setminus G)$. In Matsushima [13] a formula for the Betti numbers of M is given in terms of the multiplicities of certain unitary representations of G that come into the Matsushima formula. In particular we show that if X is irreducible and Hermitian symmetric and if rank X > p then there are no unitary representations of G that satisfy the conditions for the Matsushima formulas for the (0, p) Betti number of $\Gamma \setminus X$, $b_{0,p}(\Gamma \setminus X)$. Thus we find that if $p < \operatorname{rank} X$, $b_{0,p}(\Gamma \setminus X) = 0$. In particular if rank X > 1 we recover Matsushima's theorem [12] that the first Betti number of $\Gamma \setminus X$ is zero.

Actually this result (on the first Betti number) follows from the more general theorem of Kazhdan which says if G is a simple Lie group of split rank larger than 1 and if $\Gamma \subset G$ is a discrete subgroup so that $\Gamma \setminus G$ has finite volume relative to some Haar measure on G then $\Gamma / [\Gamma, \Gamma]$ is finite.

In light of the above result of Kazhdan it is reasonable to study the unitary representations that appear in the formula of Matsushima for the first Betti number in the case G has split rank 1. We show that in this case such representations always exist. We show that there are at most two such unitary representations and if G is locally SO(n, 1) there is exactly one, let us call it π_1 (see Lemma 2.1, Prop. 2.2 and Lemma 4.4). This gives us some interesting examples. E. B. Vinberg [16] has constructed a uniform discrete subgroup $\Gamma \subset SO_e(n, 1)$ for $3 \le n \le 5$, which is arithmetic in the sense of Borel, Harish-Chandra, such that $\Gamma/[\Gamma, \Gamma]$ is infinite. In Johnson-Wallach [7] it is shown that π_1 cannot be tempered in the sense of Harish-Chandra (see G. Warner [14]) if n > 4. Thus there exists an arithmetic uniform discrete subgroup Γ of a simple algebraic group G and a non-trivial non-tempered representation with positive multi-