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1. Introduction. D. Quillen showed in [6] that the formal group law of
complex cobordism is a universal formal group, hence for a commutative ring R
there is a natural bijection between ring homomorphisms M Us— R and formal
groups over R, where MU is the coefficient ring of complex cobordism. Simi-
larly, S. Araki [4] has shown that for a fixed prime p, the formal group law of
Brown-Peterson cohomology is universal for typical group laws over commutative
Z p-algebras. Thus if R is a commutative Z ,-algebra, there is a natural
bijection between ring homomorphisms BP,— R and typical formal groups
over R, where BP, is the coefficient ring of Brown-Peterson cohomology.

In this note we shall show that BP4(BP) represents isomorphisms between
typical formal groups over Z-algebras. This places BPy(BP) in a purely
algebraic setting, as was done for MU,(MU)in the Appendix to [5]. We show
how the structure maps for BP4«(BP)arise in this context, and use our point of
view to derive the formulas of J.F. Adams [2, Theorem 16.1] for these structure
maps.

All this works as well for MU4(MU),by omitting mention of #ypical formal
groups; this gives a description of MU 4«(MU)which is somewhat different from
the one given in [5]. In the BP-case it is essential to use coordinates for curves
over a typical formal group # which depend on u. But in the MU- case, it is
optional whether one uses ‘“‘moving coordinates” (as we do here) or “absolute
coordinates’” as in [5].

The ideas in this note grew out of musings over D. Ravenel’s paper [7]
on multiplicative operations in BP*(BP).

2. Recollections (Araki [3, §1] and [4]) For the most part we follow
Araki’s notation. All rings and algebras are to be commutative. By an isomor-
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