MULTIPLICATIVE OPERATIONS IN BP COHOMOLOGY

SHORÔ ARAKI

(Received June 27, 1974)

Introduction. In the present work we study multiplicative operations in BP cohomology. In §1 we show that all multiplicative operations in BP^* are automorphisms (Theorem 1.3). Thus they from the group $\text{Aut}(BP)$. In §2 we define Adams operations in BP^* by the formal group μ_{BP} of BP cohomology and study the basic properties of them. These operations are primarily defined for units in \mathbb{Z}_p and then extended to p-adic units. Thereby we discuss BP^* by extending the ground ring \mathbb{Z}_p to the ring of p-adic integers \mathbb{Z}_p. To achieve this extension simply by tensoring with \mathbb{Z}_p we restrict our cohomologies to the category of finite CW-complexes. Correspondingly we consider all multiplicative operations in $BP^*(\mathbb{Z}_p)\otimes\mathbb{Z}_p$ whenever it becomes necessary to do so. Adams operations could be defined also for non-units, but we are not interested in such a case in this paper. In §3 we prove that the center of $\text{Aut}(BP)$ consists of all Adams operations (Theorem 3.1).

We regard the lecture note [2] as our basic reference and use the results contained therein rather freely.

1. Multiplicative operations in BP^*.

Let BP^* denote the Brown-Peterson cohomology for a specified prime p. By a multiplicative operation in BP^* we understand a stable, linear and degree-preserving cohomology operation

\[\Theta_a: BP^*(\) \to BP^*(\)\]

which is multiplicative and $\Theta_a(1) = 1$. The set of all multiplicative operations in BP^* forms a semi-group by composition, which will be denoted by $\text{Mult}(BP)$.

With respect to the standard complex orientation of BP^* [1], [2], [7], we denote by $e_{BP}(L)$ the Euler class of a complex line bundle L and by μ_{BP} the associated formal group. Let $\Theta_a \in \text{Mult}(BP)$. Putting

\[\Theta_a(e_{BP}(L)) = \sum_{i \in \mathbb{Z}} \theta_i(e_{BP}(L))^i\]

for an arbitrary line bundle L, by naturality we obtain a well-determined power