MULTIPLICATIVE OPERATIONS IN BP COHOMOLOGY

Shôrô ARAKI

(Received June 27, 1974)

Introduction. In the present work we study multiplicative operations in *BP* cohomology. In § 1 we show that all multiplicative operations in *BP*^{*} are automorphisms (Theorem 1.3). Thus they from the group Aut (*BP*). In §2 we define Adams operations in *BP*^{*} by the formal group μ_{BP} of *BP* cohomology and study the basic proprties of them. These oprations are primarily defined for units in $Z_{(t)}$ and then extended to *p*-adic units. Thereby we discuss *BP*^{*} by extending the ground ring $Z_{(p)}$ to the ring of *p*-adic integers Z_p . To achieve this extension simply by tensoring with Zp we restrict our cohomologies to the category of finite *CW*-complexes. Correspondingly we consider all multiplicative operations in *BP*^{*}() $\otimes Z_p$ whenever it becomes necessary to do so. Adams operations could be defined also for non-units, but we are not interested in such a case in this paper. In §3 we prove that the center of Aut (*BP*) consists of all Adams operations (Theorem 3.1).

We regard the lecture note [2] as our basic reference and use the results contained there rather freely.

1. Multiplicative operations in BP*.

Let BP^* denote the Brown-Peterson cohomology for a specified prime p. By a *multiplicative* operation in BP^* we understand a stable, linear and degreepreserving cohomology operation

(1.1)
$$\Theta_a: BP*() \to BP*()$$

which is multiplicative and $\Theta_a(1)=1$. The set of all multiplicative operations in BP^* forms a semi-group by composition, which will be denoted by Mult (BP).

With respect to the standard complex orientation of BP^* [1], [2], [7], we denote by $e^{BP}(L)$ the Euler class of a complex line bundle L and by μ_{BP} the associated formal group. Let $\Theta_a \in \text{Mult } (BP)$. Putting

$$\Theta_a(e^{BP}(L)) = \sum_{i \ge 0} \theta_i(e^{BP}(L))^i$$

for an arbitrary line bundle L, by naturality we obtain a well-determined power