Daley, R.P. Osaka J. Math. 12 (1975), 283-284

A NOTE ON A RESULT OF KAMAE*

ROBERT P. DALEY

(Received August 12, 1974)

In [3] Kamae proved that for each constant c, there exists a finite string y such that

$$K(y) - K(y \mid x) > c$$

for all but finitely many finite strings x, where K() and $K(\setminus \cdot)$ are the unconditional and conditional minimal-program complexity measures respectively of Kolmogorov [4]. By considering infinite sequences we are able to obtain a slightly stronger statement of this result.

Let X^{∞} denote the set of all infinite binary strings. For $x \in X^{\infty}$ let x^n denote the initial segment of x of length n, i.e., $x^n = x(1) \quad x(n)$. To simplify matters we will associate with each finite binary string y the integer n whose binary representation is 1 y. By this means we will consider complexity expressions of the form $K(x^n)$, $K(x^n | m)$ and K(m) for $x \in X^{\infty}$ and integers n and m. Then $K(x^n | n)$ is Kolmogorov's restricted conditional complexity. By a recursively enumerable sequence we mean the characteristic sequence of a recursively enumerable set. By " $\exists n$ " and " $\forall n$ " we mean respectively "There exist infinitely many integers n" and "For all but finitely many integers n."

Theorem. There exists a recursively enumerable sequence x, such that

$\forall c \, \ddot{\exists} n \, \ddot{\forall} m. \quad K(x^n | n) - K(x^n | m) > c .$

Proof. We need the following two lemmas.

Lemma. For every recursively enumerable sequence x,

$$\exists c_1 \forall n \forall m. \quad K(x^n \mid m) \leq K(n) + c_1.$$

Proof. Let h be a total recursive function which enumerates the 1's of x, i.e., $x(i)=1 \Leftrightarrow \exists j.h(j)=i$. Define the total recursive function f(n,m) as follows: Step 1: Enumerate via h the first m Is of the sequence x, i.e. compute $h(1), \dots, h(m)$.

Step 2: Output the following finite string y of length $n - y(i) = 1 \Leftrightarrow i$ appears on

^{*} This work was supported by NSF Grant GJ-43223.