ON MULTIPLY TRANSITIVE GROUPS XII

Tuyosi OYAMA

(Received January 21, 1974)

1. Introduction

The known 4-fold transitive groups are the symmetric groups S_n $(n \ge 4)$, the alternating groups A_n $(n \ge 6)$ and Mathieu groups M_n (n=11, 12, 23, 24). The main purpose of this paper is to characterize these known 4-fold transitive groups. The result is as follows.

Theorem. Let G be a 4-fold transitive group on $\Omega = \{1, 2, \dots, n\}$. Assume that

- (*) t is the maximal number of fixed points of involutions of G. Furthermore assume that G contains a 2-subgroup Q which satisfies the following conditions:
 - (1) |I(Q)| = t and Q is a Sylow 2-subgroup of $G_{I(Q)}$,
 - (2) $N(Q)^{I(Q)} = S_t \text{ or } A_t$.

Then G is one of the following groups; S_n $(n \ge 4)$, A_n $(n \ge 6)$ or M_n (n=11, 12, 23, 24).

This theorem is a generalization of theorems of M. Hall ([2], Theorem 5.8.1), H. Nagao [10] and the author [11]: the case t<4 has been proved by M. Hall, the case t=4 or 5 by H. Nagao and the case t=6 or 7 and $N(Q)^{I(Q)}=A_t$ by the author.

The followings are corollaries.

- Corollary 1. Let G be a 4-fold transitive group on $\Omega = \{1, 2, \dots, n\}$, and P a Sylow 2-subgroup of a stabilizer of four points in G. Assume that n is even and $P \neq 1$.
- (1) If I(P)=I(Z(P)), where Z(P) is the center of P, then G is one of the following groups; S_n $(n \ge 6)$, A_n $(n \ge 8$ and $n \equiv 0 \pmod{4}$) or M_{12} .
- (2) For any point i of $\Omega I(P)$ if P_i is semiregular (± 1) on $\Omega I(P_i)$ or 1, then G is one of the following groups; S_6 , S_8 , A_8 , A_{10} , M_{12} or M_{24} .
- Corollary 2. Let G be a 4-fold transitive group on $\Omega = \{1, 2, \dots, n\}$ and P a Sylow 2-subgroup of a stabilizer of four points in G. If P is a transitive group