ON MULTIPLY TRANSITIVE PERMUTATION GROUPS III

EIICHI BANNAI*

(Received January 14, 1974)

Introduction

The purpose of the present note is to prove the following theorem.

Theorem 1. Let p be an odd prime ≥ 11 . Then there exists no permutation group G on a set $\Omega = \{1, 2, \dots, n\}$ which satisfies the following two conditions: (i) G is (p+1)-ply transitive, and $n \equiv p \pmod{p^2}$, and (ii) the order of $G_{1,2,\dots,p+1}$, the stabilizer of p+1 points of Ω in G, is not divisible by p.

This Theorem 1 is a kind of (but not full even in the case of $p \ge 11$) generalization of the result (Theorem 1) in [1]. In the case of $p \ge 11$, the Main Theorem in [2] (i.e., the determination of 2p-ply transitive permutation groups whose stabilizer of 2p points is of order prime to p) is also completed alternatively by combining this Theorem 1 with the result of Miyamoto [6].

The brief outline of the proof of Theorem 1 is as follows. The proof will be done by the way of contradiction. First we will show that the symmetric group S_p is not involved in the group GL(p-3, p), if $p \ge 11$ (Theorem A). This is proved by the similar argument as in [1, §1], by exploiting the (ordinary, modular and projective) representation theories of the symmetric groups. Next, we will restrict the structure of the Sylow p subgroup P_0 of $G_{1,2,\dots,p}$. That is, if $|P_0| \ge p^{p+1}$ then we have $|Z(P_0)| \ge p$, and moreover we can lead a contradiction by using the well known theorem of Burnside on fusion of elements in the center of a sylow p subgroup and by using a consequence (Theorem B) of Theorem A. If $|P_0| \le p^{p+1}$, then we can show (also by using Theorem A) that we have only one possibility for the structure of P_0 , namely, P_0 is isomorphic to the extraspecial p group of order p^{p+1} and of exponent p. Finally, we exclude this remaining case and complete the proof of Theorem 1. This is done by considering the fusion of p elements in P_0 . The proof of this final step was provided by T. Yoshida.

The author thanks Mr. Tomoyuki Yoshida for providing the argument of

^{*} Supported in part by the Sakkokai Foundation.

The present address: The Ohio State University, Columbus, Ohio, U.S.A.