ON THE FIRST MAIN THEOREM OF HOLOMORPHIC MAPPINGS FROM C^2 INTO $Q_{n-1}(C)$

Yознініко SUYAMA

(Received December 10, 1973)

0. Introduction

Let f be a holomorphic mapping of a complex line C into a complex projective space $P_n(C)$ and suppose that the image f(C) is not contained in any hyperplane of $P_n(C)$. Put $V[t] = \{z \in C : \log|z| < t\}$, and for a hyperplane ξ in $P_n(C)$ let $n(t, \xi)$ be the number of points in $V[t] \cap f^{-1}(\xi)$. Let Ω be the colsed form of degree 2 associated with the Fubini-Study metric on $P_n(C)$ and normalized as $\int_{P_n} \Omega^n = 1$. The counting function $N(r, \xi)$ and the order function T(r) being defined by

$$(0.1) N(r,\xi) = \int_0^r n(t,\xi)dt,$$

$$(0.2) T(r) = \int_0^r dt \int_{V(t)} f^* \Omega$$

respectively, the following equation is known as the First Main Theorem:

(0.3)
$$N(r, \xi) + (m(r, \xi) - m(0, \xi)) = T(r),$$

where $m(r, \xi)$ is a non-negative function defined for $r \in \mathbb{R}^+$ and hyperplanes ξ in $P_n(\mathbb{C})$. The term $(m(r, \xi) - m(0, \xi))$ is called the compensating term. It follows from the equation (0.3) that the image $f(\mathbb{C})$ intersects with almost all hyperplanes in $P_n(\mathbb{C})$. Furthermore it is known that the number of hyperplanes in general position not intersecting with $f(\mathbb{C})$ is at most n+1. These results are originally due to Ahlfors, and treated also by H. Wu [6] and S. S. Chern [1] in a modernized form.

Let f be a holomorphic mapping of \mathbb{C}^2 into a complex quadratic $Q_{n-1}(\mathbb{C})$ $(n \ge 3)$ satisfying certain non-degenerate conditions [§2]. We consider $Q_{n-1}(\mathbb{C})$ as a fixed hypersurface in $P_n(\mathbb{C})$. We consider a special family of (n-2)-dimensional projective spaces $P_{n-2}(\mathbb{C})$ in $P_n(\mathbb{C})$ parametrized by a Grassmann manifold $G(\mathbb{R})$ of 2-dimensional linear spaces in \mathbb{R}^{n+1} [§1]. This family determines a family of (n-3)-dimensional complex quadratic $\xi_n(\alpha \in G(\mathbb{R}))$ in $Q_{n-1}(\mathbb{C})$, each of whose elements is a Poincaré dual of the form Ω^2 in $Q_{n-1}(\mathbb{C})$.