ON MULTIPLY TRANSITIVE PERMUTATION GROUPS I

EIICHI BANNAI*)

(Received October 8, 1973)

Introduction

In [5], M. Hall determined 4-ply transitive permutation groups whose stabilizer of 4 points is of odd order. (See also Nagao [11].) On the other hand, in Bannai [1] and Miyamoto [9], *t*-ply transitive finite permutation groups in which the stabilizer of *t* points is of order prime to an odd prime *p* have been determined for $t=p^2+p$ and 3p respectively. The purpose of this seies of notes is to strengthen those results. In this first note, we will improve Lemma 2.1 in Miyamoto [9]. Namely, we will prove the following result.

Theorem 1. Let p be an odd prime. Then there exists no permutation group G on a set $\Omega = \{1, 2, \dots, n\}$ which satisfies the following three conditions: (i) G is (p+2)-ply transitive, and $n \equiv 2 \pmod{p}$,

(ii) a Sylow p subgroup P_0 of $G_{1,2,\dots,p+2}$ is semiregular on $\Omega - \{1, 2, \dots, p+2\}$, and

(iii) $|P_0| \ge p^2$.

Corollary to Theorem 1. Let p be an odd prime. Let G be a (2p+2)-ply transitive permutation group on a set $\Omega = \{1, 2, \dots, n\}$. If the order of $G_{1,2,\dots,2p+2}$ is not divisible by p, then G must be $S_n(2p+2 \le n \le 3p+1)$ or $A_n(2p+4 \le n \le 3p+1)$.

This corollary is immediately proved by combining Theorem 1 with a result of Miyamoto [9]. To be more precise, if the order of $G_{1,2,\dots,p+2}$ is not divisible by p^2 , then the 2*p*-ply transitive group $G_{1,2}$ on $\Omega - \{1, 2\}$ must contain $A^{\Omega^{-(1,2)}}$ by the result of Miyamoto [9, §1], and so G must be one of the groups listed in the conclusion of the corollary. If the order of $G_{1,2,\dots,p+2}$ is divisible by p^2 , then the (p+2)-ply transitive group $G_{1,2\dots,i}$ on $\Omega - \{1, 2, \dots, p+2\}$ is divisible by p^2 , then the (p+2)-ply transitive group $G_{1,2\dots,i}$ on $\Omega - \{1, 2, \dots, i\}$ (if $n \equiv i+2 \pmod{p}$ with $0 \le i \le p-1$) satisfies the three conditions of Theorem 1, and we have a contraidction.

In our proof of Theorem 1, the following result is very important. This result is a kind of generalization of a result of Jordan [8, Chap. IV], and will be of independent interest.

^{*)} Supported in part by the Sakkokai Foundation. Present address: The Ohio State University.