CERTAIN INVARIANT SUBRINGS ARE GORENSTEIN II

Keiichi WATANABE

(Received October 5, 1973)

Introduction

Let $R=k[X_1, \dots, X_n]$ be a polynomial ring over a field k and G be a finite subgroup of GL(n, k) with (|G|, ch(k))=1, if $ch(k) \neq 0$. We want to investigate the problem; "When is the invariant subring R^G Gorenstein?" The main result of this paper is the following theorem.

Theorem 1. We assume that G contains no pseudo-reflections. Then R^G is Gorenstein if and only if $G \subset SL(n, k)$.

Recall that $g \in GL(n, k)$ is a pseudo-reflection if $\operatorname{rank}(g-I)=1$ and g has a finite order (where I denotes the unit matrix). It is known that R^G is again a polynomial ring if and only if G is generated by its pseudo-reflections (cf. [7], Théorème 1). So it would be natural to assume that G contains no pseudo-reflections.

The "if" part was treated in [13]. So, in this paper, we consider the "only if" part. To achieve the proof, we need the theory of the canonical module of a Macaulay ring developed in [2]. As R^G is a Macaulay ring, it has the canonical module K_{R^G} , which is unique up to isomorphisms. R^G is Gorenstein if and only if $K_{R^G} \cong R^G$. We want to construct a canonical module of R^G . In this case, as R^G is normal, a canonical module is isomorphic to a divisorial ideal of R^G . Thus the canonical module K_{R^G} determines a well-defined class $c(K_{R^G})$ of the divisor class group $C(R^G)$ of R^G . R^G is Gorenstein if and only if $c(K_{R^G})=0$. But by the "Galois descente" theory of divisor class groups, $C(R^G)\cong \operatorname{Hom}(G,k^*)$ (where k^* denotes the multiplicative group of non-zero elements of k). We show that by this isomorphism, $c(K_{R^G})$ corresponds to det, the determinant, in $\operatorname{Hom}(G,k^*)$ and conclude the proof of Theorem 1.

We can apply Theorem 1 to the case of regular local rings. If (A, m) is a local ring and if $g \in \operatorname{Aut}(A)$, g induces a linear transformation of the tangent space m/m^2 of A. We denote this correspondence by $\lambda \colon \operatorname{Aut}(A) \to GL(m/m^2)$. We call an element g of $\operatorname{Aut}(A)$ a pseudo-reflection if $\lambda(g)$ is a pseudo-reflection. Then, we have the following