CERTAIN INVARIANT SUBRINGS ARE GORENSTEIN II

KEIICHI WATANABE

(Received October 5, 1973)

Introduction

Let $R=k[X_1, \dots, X_n]$ be a polynomial ring over a field *k* and *G* be a finite subgroup of $GL(n, k)$ with $(|G|, ch(k))=1$, if $ch(k) \neq 0$. We want to investigate the problem; "When is the invariant subring *R^G* Gorenstein?" The main result of this paper is the following theorem.

Theorem 1. We assume that G contains no pseudo-reflections. *Then* R^G *is Gorenstein if and only if* $G \subset SL(n, k)$.

Recall that $g \in GL(n, k)$ is a pseudo-reflection if rank $(g-1)=1$ and g has a finite order (where I denotes the unit matrix). It is known that R^G is again a polynomial ring if and only if *G* is generated by its pseudo-reflections (cf. [7], Théoreme 1). So it would be natural to assume that G contains no pseudoreflections.

The "if" part was treated in [13]. So, in this paper, we consider the "only" if" part. To achieve the proof, we need the theory of the canonical module of a Macaulay ring developed in [2]. As *R^G* is a Macaulay ring, it has the canonical module K_{R^G} , which is unique up to isomorphisms. R^G is Gorenstein if and only if $K_R \cong R^G$. We want to construct a canonical module of R^G . In this case, as *R G* is normal, a canonical module is isomorphic to a divisorial ideal of *R^G .* Thus the canonical module K_{R^G} determines a well-defined class $c(K_{R^G})$ of the divisor class group $C(R^G)$ of R^G . R^G is Gorenstein if and only if $c(K_R^G) = 0$. But by the "Galois descente" theory of divisor class groups, $C(R^G) \cong \text{Hom}(G, k^*)$ (where k^*) denotes the multiplicative group of non-zero elements of *k).* We show that by this isomorphism, $c(K_R \sigma)$ corresponds to det, the determinant, in Hom(G, k^*) and conclude the proof of Theorem 1.

We can apply Theorem 1 to the case of regular local rings. If (A, m) is a local ring and if $g \in Aut(A)$, g induces a linear transformation of the tangent space m/m^2 of A. We denote this correspondence by λ : Aut(A) $\rightarrow GL(m/m^2)$. We call an element *g* of Aut(*A*) a pseudo-reflection if λ (*g*) is a pseudo-reflection, Then, we have the following