Kamata, M. Osaka J. Math. 11 (1974), 367-378

ON COMPLEX COBORDISM GROUPS OF CLASSIFYING SPACES FOR DIHEDRAL GROUPS

MASAYOSHI KAMATA

(Received December 30, 1973)

1. Introduction

Let $G=H \cdot \Gamma$ be a semi-direct product of a finite group H by a finite group Γ , X a compact G-manifold which induces by restriction a principal H-manifold and Y a principal Γ -manifold. Then we have a principal G-space $X \times Y$ with a G-action defined by $h\gamma(x, y)=(h\gamma x, \gamma y), h\gamma \in H \cdot \Gamma$. The equivariant map $i: X \to X \times Y$ defined by $i(x)=(x, y_0)$, induces a homomorphism

$$i^*: U^*((X \times Y)/G) \to U^*(X/H)$$
.

We can define a Γ -action over $U^*(X|H)$ corresponding to a Γ -action over the complex bordism group of unitary G-manifolds defined by (1.3) of [7]. The action is denoted by x^{γ} , $x \in U^*(X|H)$, $\gamma \in \Gamma$.

In this paper, we define a homomorphism

$$i_* \colon U^*(X|H) \to U^*((X \times Y)/G)$$

and obtain the following.

Theorem 1.1. For $x \in U^*(X/H)$, $i^*i_*(x) = \sum_{\gamma \in \Gamma} x^{\gamma}$.

Let $D_p(m, n)$ be the orbit manifold of $S^{2m+1} \times S^n$ by the dihedral group D_p whose action is given in [7]. Making use of Theorem 1.1 and the Atiyah-Hirzebruch spectral sequence of the complex cobordism group, we have the following.

Theorem 1.2. Suppose that p is an odd prime. There exists an isomorphism $\widetilde{U}^{2m}(D_{\bullet}(2k+1, 4k+3)) \cong \widetilde{U}^{2m}(L^{2k+1}(p))^{\mathbb{Z}_2} \oplus \widetilde{U}^{2m}(RP^{4k+3}) \oplus U^{2m-8k-6}$,

where $L^{l}(p)=S^{2l+1}/Z_{p}$ is a (2l+1)-dimensional lens space, RP^{s} is an s-dimensional real projective space and $U^{*}()^{Z_{2}}$ is the subgroup consisting of the elements which are fixed under the Z_{2} -action.

Let BZ_p be a classifying space for Z_p . There exists an isomorphism $U^{ev}(BZ_p) \simeq U^*[[X]]/([p]_F(X)), U^{ev}() = \sum U^{2i}()$ [8]. Consider the Z_2 -action on $U^{ev}(BZ_p)$ defined by