Öshima, H. Osaka J. Math. 11 (1974), 361–366

ON THE STABLE JAMES NUMBERS OF COMPLEX PROJECTIVE SPACES

HIDEAKI ÖSHIMA

(Received November 14, 1973)

1. Introduction

For a pointed finite CW-pair $i: A \subset X$ where A is a connected oriented topological manifold, a (stable) map $f: X \to A$ is of type r if the composite $A \xrightarrow{i} X$ $\xrightarrow{f} A$ has degree r. j(X, A) and $j_s(X, A)$ denote the sets of integers r for which there exists a map $f: X \to A$ of type r and a stable map of type r respectively. When j(X, A) forms an ideal (k(X, A)) in the ring of integers Z—here k(X, A)denotes the non-negative generator, we call k(X, A) the James number of the pair (X, A). In the stable case $j_s(X, A)$ is always an ideal of Z. So we may define the stable James number $k_s(X, A)$.

James [3] has posed the problem of determining $j(SP^m(S^n), S^n)$, where $SP^m(S^n)$ is the *m*-fold symmetric product of an *n*-sphere S^n with a base point x_0 and $i: S^n \rightarrow SP^m(S^n)$ is the axial embedding $x \rightarrow [x, x_0, \dots, x_0]$. James showed for example $j(SP^m(S^n), S^n)$ forms an ideal of Z and, for an even dimentional sphere S^{2n} , $k(SP^m(S^{2n}), S^{2n})=0$. On the contrary $k_s(SP^m(S^n), S^n) \neq 0$ for any positive integers *m* and *n*. From now on we introduce the notation $k_s^{m,n}$ instead of $k_s(SP^m(S^n), S^n)$.

In this note we give lower bounds and an upper bound of $k_s^{m,2}$. That is, we prove

Theorem. For positive integers m and n

- (1) $k_s^{m,n} \neq 0;$
- (2) $k_s^{m+1,n}$ is a multiple of $k_s^{m,n}$;
- (3) $k_s^{m,2}$ is divisible by all the integers $m, m-1, \dots, 2$;
- (4) $k_s^{2^m-1,2}$ is divisible by 2^m for $m \ge 2$;

(5) $k_s^{m,2}$ is a divisor of $m!(m-1)!\cdots 2!$, in particular none of the prime factors of $k_s^{m,2}$ is greater than m.

Corollary. The above lower estimates (3) and (4) are best possible for $m \leq 4$. That is

$$k_s^{1,2} = 1, k_s^{2,2} = 2, k_s^{3,2} = k_s^{4,2} = 12.$$