Oshima, H. Osaka J. Math. 11 (1974), 361-366

ON THE STABLE JAMES NUMBERS OF COMPLEX PROJECTiVE SPACES

HiDEAKi OSHIMA

(Received November 14, 1973)

1. Introduction

For a pointed finite *CW*-pair *i*: $A \subset X$ where *A* is a connected oriented *i* topological manifold, a (stable) map/: *X—>A* is of type *r* if the composite *A-+X* \rightarrow *A* has degree *r*. *j*(*X*, *A*) and *j*_s(*X*, *A*) denote the sets of integers *r* for which there exists a map $f: X \rightarrow A$ of type r and a stable map of type r respectively. When $j(X, A)$ forms an ideal $(k(X, A))$ in the ring of integers Z—here $k(X, A)$ denotes the non-negative generator, we call $k(X, A)$ the James number of the pair (X, A) . In the stable case $j_s(X, A)$ is always an ideal of Z. So we may define the stable James number *k^s (X, A).*

James [3] has posed the problem of determining $j(SP^m(Sⁿ), Sⁿ)$, where $SP^{m}(S^{n})$ is the *m*-fold symmetric product of an *n*-sphere S^{n} with a base point x_{0} and *i*: $S^n \rightarrow SP^m(S^n)$ is the axial embedding $x \rightarrow [x, x_0, \dots, x_0]$. James showed for example $j(SP^m(S^n), S^n)$ forms an ideal of Z and, for an even dimentional sphere S^{2n} , $k(SP^m(S^{2n}), S^{2n})=0$. On the contrary $k_s(SP^m(S^n), S^n) \neq 0$ for any positive integers *m* and *n*. From now on we introduce the notation $k_{n}^{m,n}$ instead of $k_s(SP^m(S^n), S^n)$.

In this note we give lower bounds and an upper bound of *k™'² .* That is, we prove

Theorem. *For positive integers m and n*

- (1) $k_s^{m,n}$ \neq 0;
- (2) $k^{m+1,n}_s$ *is a multiple of* $k^{m,n}_s$
- (3) $k_s^{m,2}$ *is divisible by all the integers m, m* $-1, \dots, 2;$
- (4) $k_s^{2^m-1,2}$ *is divisible by* 2^m *for* $m \ge 2$;

(5) $k^{m,2}$ *is a divisor of m* $\lceil (m-1)! \cdots 2 \rceil$ *, in particular none of the prime factors of k™'² is greater than m.*

Corollary. The above lower estimates (3) and (4) are best possible for $m \leq 4$. *That is*

$$
k_s^{1,2}=1, k_s^{2,2}=2, k_s^{3,2}=k_s^{4,2}=12.
$$