Araki, S. Osaka J. Math. 11 (1974), 347–352

[p]-TYPICAL FORMAL GROUPS AND THE HOMOMORPHISM $\Omega_*^{v} \rightarrow \Omega_*^{so}$

Shôrô ARAKI

(Received October 30, 1973)

In the present note we construct a [p]-typical formal group $F_{[p]}$, p a prime, which is universal for [p]-typical formal groups over arbitrary ground rings; and we study structure of the ground ring of $F_{[p]}$ (Corollary 5). Using $F_{[2]}$ we describe the kernel of the forgetful homomorphism $S: \Omega^{U}_{*} \rightarrow \Omega^{So}_{*}$ of complex structures (Corollary 7).

Our basic reference is [1] and we use the notations of [1] freely.

1. Universal [p]-typical formal group

Let U be the Lazard ring and F_U the universal one-dimensional formal group defined over U. As usual we identify U with the complex cobordism ring Ω^U_* . Then U is graded by non-negative even degrees (or by non-positive even degrees when we regard Ω^U_* as $U^*(pt)$).

Let p be a prime, R a commutative ring with 1 and F a (commutative onedimensional) formal group over R. By the terminology of [1] F is [p]-typical iff $f_{p,F}\gamma_0=0$, where f_p is the Frobenius operator and γ_0 is the identity curve.

Let F be [p]-typical and $u: U \rightarrow R$ the unique unitary homomorphism of rings such that $u_*F_U=F$. By the notation of [1] we put

$$(\boldsymbol{f}_{p,U}\boldsymbol{\gamma}_0)(T) = \sum_{n\geq 1}^{F_U} (v_{np-1}^{(p)}T^n).$$

Then $v_{np-1}^{(p)} \in U_{2(np-1)}$. Now

$$u_*(\boldsymbol{f}_{p,U}\boldsymbol{\gamma}_0) = \boldsymbol{f}_{p,F}\boldsymbol{\gamma}_0 = 0$$
.

Hence

$$\sum_{n\geq 1}^{F} (u(v_{np-1}^{(p)})T^{n}) = 0$$
 ,

and by [1], Proposition 2.10, we obtain

(1.1)
$$u(v_{np-1}^{(p)}) = 0$$
 for all $n \ge 1$.

Let

$$J_p = (v_{p-1}^{(p)}, v_{2p-1}^{(p)}, \cdots, v_{np-1}^{(p)}, \cdots),$$