COBORDISM ALGEBRA OF METACYCLIC GROUPS

KATSUYUKI SHIBATA

(Received October 23, 1973)

1. Introduction and the statement of result

Let $Z_{q,p}$ be the metacyclic group $\{x, y | x^q = y^p = 1, yxy^{-1} = x^r\}$ where $p \ge 2$ is a prime integer, $q \ge 3$ is an odd integer and r is a primitive p-th root of 1 mod qsuch that (r-1, q)=1 (see Shibata [15], 1. Introduction). The object of the present article is to determine the oriented and weakly complex cobordism algebra $\Omega_L^*(Z_{q,p})$ (L=SO, U) of the classifying space of $Z_{q,p}$. Our main result is the following.

Theorem. Let $p \ge 3$ in case L = SO and $p \ge 2$ in case L = U.

(1) $\Omega_L^*(Z_{q,p})$ is a sum of two Ω_L^* -subalgebras whose intersection is the scalars Ω_L^* . These subalgebras are the quotients of power series rings over Ω_L^* generated respectively by the cobordism Euler classes $e(v_{q,p})$ and $e(\tilde{\eta}_p)$.

Here $\tilde{\eta}_p$ is the pull-back of the Hopf line bundle η_p over B_{Z_p} and $\nu_{q,p}$ is a certain complex vector bundle of dimension p whose "restriction" on B_{Z_q} is $\eta_q \oplus \eta_p^r \oplus \cdots \oplus \eta_q^{r^{p-1}}$ with η_q the Hopf line bundle over B_{Z_q} .

(2) $\Omega_L^*(Z_{q,p}) \cong \Omega_L^*[[(\prod_{j=0}^{p-1} [r^j]_F(X)), Y]]/(XY, [q]_F(X), [p]_F(Y), (\text{Tor } \Omega_L^*)X,$

(Tor Ω_L^*) Y), where []_F indicates the formal multiplication with respect to the formal group law F(X, Y) of complex cobordism theory (or its canonical reduction to oriented cobordism for L=SO) (see Quillen [12]), Tor $\Omega_U^*=0$ and Tor Ω_{So}^* consists of elements of order 2. This isomorphism is realized by the correspondence; $e(\nu_{q,p}) \mapsto \prod_{i=0}^{p-1} [r^j]_F(X)$ and $e(\tilde{\eta}_p) \mapsto Y$.

(3) In case L=SO and p=2, the Ω_L^* -subalgebra generated by $e(\tilde{\eta}_p)$ in (1) is replaced by $\pi^*\Omega_{SO}^*(Z_2)$, where π^* is the monomorphism induced by the projection $\pi: B_{Z_{q,2}} \rightarrow B_{Z_2}$. And (2) is modified as

$$\Omega_{SO}^*(Z_{q,2}) \cong \Omega_{SO}^*[\prod_{j=0}^{p-1} [r^j]_F(X)]]/([q]_F(X), (\text{Tor } \Omega_{SO}^*)X) \oplus \tilde{\Omega}_{SO}^*(Z_2).$$

REMARK. $\Omega_{So}^*[[Y]]/([2]_F(Y)) = \Omega_{So}^*[[Y]]/(2Y)$ is contained in $\Omega_{So}^*(Z_2)$ as a proper Ω_{So}^* -subalgebra, Y being the reduction of $e(\eta_2)$ to $\Omega_{So}^*(Z_2) = \Omega_{So}^*(B_{Z_2})$. This is easily derived from the results of Shibata [14] via the Atiyah-Poincaré