Saitō, Y. Osaka J. Math. 11 (1974), 295-306

THE PRINCIPLE OF LIMITING ABSORPTION FOR THE NON-SELFADJOINT SCHRÖDINGER OPERATOR IN R²

YOSHIMI SAITŌ

(Received November 13, 1973)

Introduction

The present paper is a continuation of [3] and is devoted to extending the results obtained in [3] to the non-selfadjoint Schrödinger operator in R^2 .

In the paper [3] we considered the non-selfadjoint Schrödinger operator

(0.1)
$$L = -\sum_{j=1}^{N} \left(\frac{\partial}{\partial x_j} + i b_j(x) \right)^2 + Q(x)$$

in \mathbb{R}^N , where N is a positive integer such that $N \neq 2$, and the complex-valued function Q(x) and the real-valued functions $b_j(x)$ $(j=1, 2, \dots, N)$ are assumed to satisfy some asymptotic conditions at infinity. Among others we have shown the following: Let us define a Hilbert space $L_{2,\beta}=L_{2,\beta}(\mathbb{R}^N)$ $(\beta \in \mathbb{R})$ by

$$(0.2) L_{2,\beta} = \{f(x)/(1+|x|)^{\beta}f(x) \in L_2(\mathbb{R}^N)\}$$

with its inner product

(0.3)
$$(f, g)_{\beta} = \int_{\mathbf{R}^{N}} (1 + |x|)^{2\beta} f(x) \overline{g(x)} dx$$

and norm

(0.4)
$$||f||_{\beta} = [(f, f)_{\beta}]^{1/2}.$$

If $\kappa \in C_+ = {\kappa \in C/\kappa \neq 0 \text{ and Im } \kappa \geq 0}$ does not belong to an exeptional set which is called the set of the singular points of *L*, then the operator $(L-\kappa^2)^{-1}$ is welldefined as a bounded linear operator from $L_{2,(1+\varepsilon)/2}$ into $L_{2,-(1+\varepsilon)/2}$ ($\varepsilon > 0$) with the estimate

(0.5)
$$||(L-\kappa^2)^{-1}|| = O(|\kappa|^{-1}) (|\kappa| \to \infty).$$

Here $u = (L - \kappa^2)^{-1} f \in L_{2, -(1+\varepsilon)/2}$ $(f \in L_{2, (1+\varepsilon)/2})$ is a unique solution of the equation

$$(0.6) \qquad (L-\kappa^2)u=f$$

with a sort of "radiation condition", and $||(L-\kappa^2)^{-1}||$ means the operator norm