Fujiwara, D. Osaka J. Math. 11 (1974), 283-293

AN APPROXIMATE POSITIVE PART OF A SELF-ADJOINT PSEUDO-DIFFERENTIAL OPERATOR II

DAISUKE FUJIWARA

(Received September 26, 1973)

1. Introduction

Let P = P(x, D) be a self-adjoint pseudo-differential operator with the symbol $p(x, \xi)$ in the class $S_{1,0}^1$ of Hörmander. The positive part of P is defined by

$$P^+ = \int_0^\infty \lambda \, dE(\lambda)$$
 ,

where $dE(\lambda)$ is the spectral measure of P. We shall be concerned with the following question: To what extent the correspondence; $u \rightarrow P^+u$ can be localized? We shall prove a localization principle for the operator P^+ which is analogous to Theorem 6.3 of Hörmander [5]. If we combine this with our previous discussions in [2], we can explicitly construct an operator B such that we have estimate

$$|((A^+ - B)u, v)| \leq C ||u||_{1/6} ||v||_{1/6},$$

where u and v are arbitrary functions in $\mathcal{D}(\mathbf{R}^n)$ and C is a positive constant independent of u and v.

2. Localized operators

Let us repeat our notations. $p(x, \xi)$ is a function in the class $S_{1,0}^1$ which vanishes unless x lies in a compact set K in \mathbb{R}^n . We treat pseudo-differential operator P(x, D) defined as

(2.1)
$$P(x, D)u(x) = (2\pi)^{-n} \iint_{R^{2n}} p(x, \xi) u(y) e^{i(x-y) \cdot \xi} dy d\xi.$$

We assume that P=P(x, D) is self-adjoint in Hilbert space $L^2(\mathbb{R}^n)$.

Now we make use of the partition of unity of Hörmander [5]. Let $g_0=0$, g_1 , g_2 , \cdots be the unit lattice points in \mathbb{R}^n . Then \mathbb{R}^n is covered by open cubes of side 2 with center at these points. Let $\Theta(x)$ be a non-negative C_0^{∞} function which equals 1 on $|x_j| \leq 1$ and 0 outside $|x_j| \leq 3/2$, $j=1, 2, 3, \dots, n$. We set